
Newton’s Laws of Motion

sychics and fortune-tellers try to predict the future. Such predictions are rarely

confirmed, however. There are simply too many unforeseeable circumstances to

allow anyone to predict human affairs reliably. Yet it is sometimes possible to predict the

future for mechanical systems. For example, we can predict the future course of a newly

observed comet, using Newton’s laws of motion. The eighteenth century French

scientist Laplace believed that this predictive capacity of Newtonian mechanics could, in

principle, be applied even to human events. He wrote:

If an intellect were to know, for a given instant, all the forces that animate nature and the con-
dition of all the objects that compose her, and were also capable of subjecting these data to
analysis, then this intellect would encompass in a single formula the motions of the largest bod-
ies in the universe as well as those of the smallest atom; nothing would be uncertain for this in-
tellect, and the future as well as the past would be present before its eyes.

Although Laplace’s belief turned out to be wrong, Newtonian mechanics does have a

remarkable predictive capacity, as we shall see in this chapter.

In the three preceding chapters we described motion, using the concepts of velocity

and acceleration. However, we have not yet discussed how the motion of a body results

from forces acting on the body. In this chapter we shall begin our study of dynamics,

that part of mechanics that relates the motion of a body to forces exerted on the body

by its surroundings. We shall use Newton’s laws of motion, together with several force

laws, to describe and explain the connection between forces and motion.
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Classical Mechanics
In 1687 Isaac Newton, whose life is described at the end of Chapter 6, published his
great work Philosophiae Naturalis Principia Mathematica. In the Principia Newton
established a complete conceptual and mathematical system for understanding mo-
tion. He formulated three general laws of motion and used them, along with his law
of universal gravitational force, to solve the ancient problem of understanding the so-
lar system. Starting from these laws, Newton was able to calculate planetary orbits
precisely. He was also able to explain the behavior of comets and of ocean tides. To-
day, more than 300 years later, Newton’s system of mechanics, called “classical me-
chanics,” is still used to describe that part of nature most accessible to human obser-
vation.* Newton’s laws are applied to an enormous variety of physical systems. For
example, they are used to determine internal forces and stresses in the design of rigid
structures; they are used to study the forces acting on and within the human body un-
der various conditions; and they are used to calculate the engine thrust necessary to
send a spacecraft to a given destination.

There are two general kinds of problems encountered in classical mechanics:
1 Given the acceleration of a particle, find the forces exerted on the particle by its

physical environment. For example, determine the force of air resistance on a
parachutist accelerating toward the earth at a given rate.

2 Given a particle’s initial position and initial velocity and the forces exerted on it
by its physical environment, determine the particle’s subsequent motion. For
example, given the location and velocity of a comet relative to the sun, deter-
mine the comet’s position and velocity at any time in the future.

Force
As a first step in developing the concept, think of force as either a push or a pull ex-
erted by one body on another. Historically the force concept developed from human
pushes and pulls and the accompanying feeling of muscular exertion.

Anytime one body exerts a force on a second body, the body exerting the force
also experiences a force, called a “reaction force” (Fig. 4-1).

*Only in the twentieth century have Newton’s laws failed in their ability to describe physical systems and
then only in situations remote from everyday experience, as when an object is moving at nearly the speed
of light or when the system is of atomic or subatomic dimensions. We shall study these domains of “mod-
ern physics” in Chapters 27 to 30. There we shall find that the laws of classical physics are superseded by
the more general laws of relativity and quantum physics. However, we do not need to introduce the more
difficult methods of modern physics into the solution of problems that can be successfully solved using
classical physics. Furthermore, a thorough grounding in classical mechanics is essential to an understand-
ing of modern physics.

4-1

4-2

Fig. 4-1 Touching and being touched
—action and reaction.
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The mutual interaction between two bodies is illustrated in Fig. 4-2 for several
systems. Certain forces act only when the two bodies are touching, as in examples a,
b, c, and f in Fig. 4-2. These are called contact forces. There are other forces, how-
ever, that act even when the interacting bodies are not touching. This action at a dis-
tance is easy to observe in the case of two permanent magnets (example d). The
gravitational force is another example of a noncontact force. Near the surface of the
earth, a force acts on any body, pulling it toward the center of the earth (example e).
The body’s weight is a measure of this attractive force.

Although contact is not necessary for there to be forces acting between two bod-
ies, the strength of the interaction generally depends on how close to each other the
two bodies are. Thus magnets must be fairly close to each other if they are to experi-
ence an observable mutual force, and a body must be somewhere in the vicinity of
the earth to experience fully the earth’s gravitational pull.

Fig. 4-2 Forces between inter-
acting bodies.
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Newton’s First Law
Newton’s Statement
Newton’s first law of motion states that “Every body continues in its state of rest, or
of uniform motion in a straight line, except when it is compelled to change that state
by forces impressed upon it.” The tendency of a body to maintain its state of rest or
of uniform motion in a straight line is called inertia, and the first law is sometimes
called the law of inertia.

If a body either remains at rest or moves uniformly in a straight line, the body’s ve-
locity is constant and its acceleration is therefore zero. Thus another way of stating
the first law is that: a body will have zero acceleration if no forces act upon it.

The first law implies that the effect of a force is to accelerate a body—to change
its state of motion. This implication makes more precise our original notion of force
as a push or a pull.

Galileo and Aristotle

The first law was partially formulated by Galileo when he was studying objects given
an initial velocity on a smooth horizontal plane. Galileo observed that the smoother
the surface, the farther an object travels before coming to rest. He concluded that, in
the absence of friction, an object would travel forever, no force being necessary to
maintain its motion.* Galileo’s ideas were in sharp contrast to those of Aristotle, who
believed that motion could not exist without the application of force. Aristotle’s be-
lief was doubtless derived from common experience, where friction is a factor and
where an applied force is necessary to maintain motion by balancing the frictional
force. For example, if you want to slide a book along the surface of your desk, you
must continuously apply a force to the book in order to cancel the force of friction.
Otherwise the book quickly comes to rest.

The air track and air table are devices for producing sliding motion with very little
friction (Fig. 4-3), and so they approximate the ideal conditions envisioned by
Galileo. So little friction is present on their surfaces that, once an object is given an
initial velocity, it continues to move for a considerable time.

Inertial Reference Frames

Is Newton’s first law valid for an observer in any reference frame? To answer this
question, suppose that you are in outer space and observe an isolated body at rest.
Another observer, who is accelerating with respect to you, views the same body and
observes it to be accelerated. Since the body is isolated, there is nothing around to
produce a force on it. Newton’s first law is obviously satisfied for you, since both the
force on the body and its acceleration equal zero. But for the other observer, New-
ton’s first law is violated because the body appears to be accelerated without any
force acting on it.

Whether Newton’s first law is satisfied for any given observer depends on the ref-
erence frame of the observer. A reference frame in which Newton’s first law (the
law of inertia) is satisfied is called an “inertial reference frame.”

Given one inertial reference frame, any other reference frame moving at constant
velocity with respect to it is also inertial. In our example, if still another observer
comes along, one who is moving at constant velocity relative to you rather than ac-
celerating, she observes the isolated body moving at constant velocity. Newton’s first
law is satisfied in her reference frame as well as yours.

*Galileo believed that this ability to travel forever would be true for a perfectly smooth circular path
around a perfectly spherical earth, rather than for a straight-line path. Descartes, a contemporary of New-
ton, was responsible for recognizing that this principle applies only to linear motion.

4-3

Fig. 4-3 An air track and an air table
have surfaces with hundreds of tiny
holes bored in them. Air is blown out
through the holes, thereby allowing the
“cars” to ride on a nearly frictionless
cushion of air. Games such as air hockey
utilize the same principle.
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Can we name at least one physical reference frame that is inertial? Since the prin-
ciple of inertia was formulated on earth, it is reasonable to assume that the earth it-
self is such an inertial frame. This turns out to be a good approximation in many
cases but not exactly correct. The first law works in any reference frame with respect
to which distant stars are either at rest or moving at constant velocity. It is a remark-
able fact that one of the simplest laws of physics, discovered by observation and
experiment on earth, is connected to the most distant matter in the universe. Because
of the earth’s daily rotation, points on the earth experience acceleration with respect
to the stars, and so the earth’s surface is not a truly inertial reference frame. However,
the magnitude of this rotational acceleration is small—only about 0.03 m/s2, as
shown in Problem 41 of Chapter 3. Therefore, for most practical purposes we can ig-
nore this small acceleration and take the surface of the earth to be an inertial ref-
erence frame.

It is not only Newton’s first law that is valid in any inertial reference frame. It turns
out that all the laws of physics are valid in any inertial reference frame.

Mass
Mass is a measure of the inertia of a body; that is, the mass of a body is a measure
of the body’s resistance to acceleration. Some bodies are harder to accelerate than
others. Consider, for example, a bowling ball and a billiard ball, both initially at rest
on a billiard table. If you strike the billiard ball with a cue stick, you can easily apply
enough force to the ball to give it a significant velocity. The billiard ball is relatively
easy to accelerate. Strike the bowling ball with the cue in the same way, however,
and it will hardly move. To give the bowling ball the same acceleration you gave the
billiard ball would require a much larger force. A bowling ball resists acceleration
more than a billiard ball. A bowling ball has more mass than a billiard ball.

How do we quantify the concept of mass? Mass is a fundamental property of mat-
ter, just as length is a fundamental property of space (or of matter in space) and time
is a fundamental property of existence. We define all these fundamental quantities by
defining how we measure them. In the case of length and time, this quantification is
familiar and accepted. Length is quantitatively defined when we establish a process
for measuring the length of any body. Measurement of a body’s length is a compari-
son between that length and multiples of some standard length, say, the meter. Time
is quantified when we establish a process for measuring any time interval with re-
spect to a standard unit of time. Measurement of a time interval is accomplished
when we note the readings of a clock at the beginning and end of that interval.

Likewise the concept of mass can be made quantitative by reference to a standard
mass. The scientific standard of mass, the standard kilogram, is a cylinder made of a
very durable platinum-iridium alloy and kept in a sealed vault in Paris. Copies of this
standard are in laboratories all over the world.

The mass of any object can be defined by the following experiment. Place a copy
of the standard kilogram (abbreviated kg) on a frictionless surface and apply a force
sufficient to give the kilogram an acceleration of 1 m/s2 (Fig. 4-4). Next, apply this
same force to any other body whose mass you want to determine.* The mass of the
body is defined to be the inverse of the acceleration the body experiences under the
action of this force. For example, if a body experiences an acceleration of 2 m/s2, it
has a mass of 0.5 kg by definition. If another body is accelerated at a rate of m/s2

by the same force, it has a mass of 3 kg.

*We can be sure it is the same force by using a spring to apply the force; the same stretching of the spring
implies the same force.

4-4

1
}
3

Fig. 4-4 Three bodies of different
mass are accelerated by the same force.
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Fig. 4-6 A particle subject to two
forces is accelerated in the direction of
the resultant force S F.
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Fig. 4-5 A balance is used to measure
mass.

Mass is an additive property of matter. If a body of mass m1 is attached to a body
of mass m2, the mass of the combination is m1 1 m2. For example, if we place a 2 kg
mass and a 3 kg mass together on an air track and apply the same force as before, we
will observe an acceleration of 1⁄5 m/s2. This means that when we combine the 2 kg
and 3 kg masses, we have a total of 5 kg.

We shall show in the next section that the weight of a body is proportional to its
mass. This proportionality allows for a much easier method of measuring mass than
the method used to define it. As a practical procedure, we can use an equal-arm bal-
ance to measure mass (Fig. 4-5). An unknown mass is balanced with multiples or
submultiples of the standard mass. Balance is achieved when the forces acting on the
two arms of the balance are equal. These forces are equal to the weights of the two
masses. Equality of the weights implies equality of the masses.

Because weight and mass are proportional to each other, the two are often con-
fused. It is important to distinguish clearly between them. Mass, a scalar quantity, is
a measure of a body’s inertia; weight, a vector quantity, is a measure of the earth’s
gravitational pull on the body.

Newton’s Second and Third Laws
Second Law
The acceleration of a particle is determined by the resultant force acting on the parti-
cle. According to Newton’s second law of motion, the acceleration is in the direc-
tion of the resultant force S F (Fig. 4-6), and the magnitude of the resultant force
equals the product of mass times acceleration. Using vector notation, the second law
is expressed

S F 5 ma (4-1)

This vector equation implies that each component of the resultant force equals the
mass times the corresponding component of acceleration. For forces in the xy plane,
the second law in component form is written

S Fx 5 max S Fy 5 may

If we know the acceleration of a particle, we can use the second law to find the re-
sultant force acting on the particle. On the other hand, if we know the forces acting
on the particle, we can use the second law to find the particle’s acceleration. We can
then use the acceleration to predict the future motion of the particle.* When acceler-
ation is the unknown, we may express the second law in the form

a 5 (4-2)

or ax 5 ay 5

*The equations for the position and velocity of a particle undergoing linear motion at constant accelera-
tion are an example of this (Section 2-2).
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Units

The unit of force is obviously related to units of mass and acceleration by the second
law (S F 5 ma). We define the newton, abbreviated N, to be the force that produces
an acceleration of 1 m/s2 when acting on a 1 kg mass. Thus

1 N 5 1 kg-m/s2 (4-3)

The dyne is the force necessary to accelerate a 1 gram mass at the rate of 1 cm/s2:

1 dyne 5 1 g-cm/s2 5 (10 ]]3 kg)(10]]2 m)/s2

5 10 ]5 kg-m/s2

5 10 ]5 N

The pound is the unit of force in the British system. Although the pound may be de-
fined independently, it is perhaps simplest to relate it to the newton:

1 lb 5 4.45 N (4-4)

The unit of mass in the British system is the slug. Since the British unit of accelera-
tion is ft/s2, we may write

1 slug 5 (1 lb)/(1 ft/s2)
or 1 slug 5 (4.45 N)/(0.305 m/s2) 5 14.7 kg

Systems of units for force and mass

System of  units Mass Acceleration Force

SI kilogram m/s2 N 5 kg-m/s2

cgs gram cm/s2 dyne 5 g-cm/s2

(1 dyne 5 10]5 N)
British slug ft/s2 lb 5 slug-ft/s2

(1 lb 5 4.45 N)

Table 4-1
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Third Law

Newton’s third law of motion states that forces result from the mutual interac-
tion of bodies and therefore always occur in pairs, as in Fig. 4-2. The third law
states further that these forces are always equal to each other in magnitude and
opposite in direction. Notice that this last statement does not mean that the forces
cancel, since they do not act on the same body. The two forces involved in the third
law always act on two different bodies. Failure to recognize this point is a common
source of error in problem solving.

EXAMPLE 1 Computing the Force to Accelerate a Body

Find the force that must be exerted on a 0.500 kg air-track car
to give it an acceleration of 3.00 m/s2.

SOLUTION  According to Newton’s second law, the re-
sultant force equals the product of the car’s mass and its ac-
celeration:

S F 5 ma

If we choose the x-axis along the track, we have only an x
component of acceleration. Denoting the single horizontal
force by F, we find its x component:

Fx 5 max 5 (0.500 kg)(3.00 m/s2) 5 1.50 N



The forces occurring in any interaction are often referred to as action and reaction
forces. This terminology should not be misinterpreted. Neither force occurs before
the other. Either force may be called the action force; the other is then called the re-
action force. Action-reaction forces are shown in Fig. 4-2 for several systems.

The third law does not imply that the effect of the two forces will be the same. For
example, when a rifle fires a bullet, the forces on the bullet and the rifle have equal
magnitude, but the bullet, because of its much smaller mass, experiences a much
greater acceleration than the rifle. Or when one boxer punches another in the face, the
forces on the face and the fist are equal in magnitude, but the effects of the two forces
are quite different.

Newton’s third law is utilized in locomotion. For example, in walking you move
forward by pushing one foot backward against the floor. The reaction force of the
floor on your foot produces the forward acceleration of your body (Fig. 4-7a). In
swimming, forward motion is provided primarily by your arms, which push the wa-
ter backwards, thereby producing a reaction force of the water on your arms in the
forward direction (Fig. 4-7b). The flight of birds is also based on this principle.*

*In analyzing the flight of birds, Leonardo da Vinci (1452–1519) recognized that when a bird’s wings
thrust against the air, the air pushes back on the wings and thereby supports the bird. But Leonardo’s an-
ticipation of Newton’s third law as well as his other scientific discoveries had no influence on the devel-
opment of science because they were unknown until hundreds of years later. Leonardo was so concerned
about keeping his discoveries secret that he wrote in a mirror-image code, so that his words could be read
only when seen in a mirror.

Fig. 4-7 Using Newton’s third law to
produce human motion.
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EXAMPLE 2 Pushing on a Wall

A standing person pushes against a wall with a horizontal
force (Fig. 4-8). (a) Why doesn’t the section of wall in contact
with his hand move? (b) According to the third law, the per-
son’s horizontal push on the wall is accompanied by a reaction
force on the person. Why doesn’t he move away from the wall
as a result of this reaction force?

SOLUTION  (a) The section of wall in contact with the
hand does not move in response to the applied force because
other forces are exerted on it by the other parts of the wall in
contact with that section.* Since the wall doesn’t move, the
resultant of all forces must be zero, according to Newton’s
second law (S F 5 ma 5 0).

*Actually there is a very slight movement of the surface when it is first
pushed. As soon as the surface is slightly deformed, the surrounding parts
of the wall begin to create a force opposing that exerted by the hand.  If
the wall’s surface is soft (for example, cork) the deformation is readily ob-
servable.

Fig. 4-8

(a)

(b)

Continued.
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EXAMPLE 2—cont’d

(b) The wall certainly exerts an outward force on the hand (Fig.
4-9). If this force were unbalanced, the person would move
away from the wall. Since the person is standing at rest, New-
ton’s second law implies that the sum of the forces acting on the
person must be zero. So there must be another force acting on
the person, one that cancels the outward force of the wall. This
other force on the person cannot be the reaction force to the
wall’s outward push. Remember action-reaction forces always
act on different bodies.

The other force acting on the person is provided by the inter-
action between the feet and the floor. The feet must push out
against the floor so that the floor will push back against the feet.
As illustrated in Fig. 4-9, this pushing in opposite directions by
the wall and floor produces a resultant force of zero. (If the per-
son were on roller skates, F2 would be smaller than F1 and the
person would move to the right.)

Fig. 4-9

EXAMPLE 3 Finding the Acceleration of a Body

Three astronauts, each of mass 70.0 kg, “float” in an orbiting
space station and simultaneously exert forces on a block hav-
ing a mass of 20.0 kg, as indicated in Fig. 4-10a. (a) Find the
x and y components of the block’s acceleration. (b) Find the
instantaneous acceleration of the astronaut exerting the force
F1.

SOLUTION  (a) We apply the component form of New-
ton’s second law to the block, in order to find ax and ay:

ax 5

From the figure, we find the x component of each force and
then substitute into our acceleration equation:

ax 5

5 

5 10.1 m/s2

We obtain ay in the same manner:

ay 5 5

5

5 2.31 m/s2

(90.0 N)(sin 30.0°) 1 125 N 2 (175 N)(sin 45.0°)
}}}}}}

20.0 kg

F1y 1 F2y 1 F3y
}}

m

S Fy
}

m

(90.0 N)(cos 30.0°) 1 0 1 (175 N)(cos 45.0°)
}}}}}

20.0 kg

F1x 1 F2x 1 F3x
}}

m

S Fx
}

m

Fig. 4-10

Continued.



Force Laws
A force law relates the force on a body to the body’s surroundings. In this section
we shall discuss several important force laws that will be useful in applying New-
ton’s laws.

Weight on Earth

Perhaps the simplest of all force laws is the gravitational force law for a body of mass
m near the surface of the earth. We can find an expression for this force by consider-
ing a body of mass m that is falling freely and experiencing negligible air resistance
(Fig. 4-11). According to Newton’s second law, the resultant force acting on any
body equals the product of its mass and acceleration:

S F 5 ma

The falling body is subject only to the earth’s gravitational force, which we refer
to as the body’s weight (denoted by w); thus the resultant force equals the weight
(S F 5 w). We know from experiment that, in the absence of air resistance, all freely
falling bodies near the earth’s surface experience the same acceleration a 5 g, as dis-
cussed in Section 2-3. Substituting the resultant force and acceleration into Newton’s
second law, we obtain an expression for the weight of a body of mass m on earth:

w 5 mg (4-5)

4-6

EXAMPLE 3—cont’d

(b) If we know all the forces acting on the astronaut exerting
force F1, we can apply Newton’s second law to find her accel-
eration. The only force acting on her is the reaction force to
the force F1 she exerts on the block. According to Newton’s
third law, this reaction force F19 is the negative of the force F1:

F19 5 ]F1

The force F19 has the same magnitude as F1 and is directed
30.0° below the negative x-axis, as shown in Fig. 4-10b. To
find the astronaut’s acceleration a19, we apply Newton’s sec-
ond law:

a19 5 5

This vector equation implies that the astronaut’s acceleration
is in the same direction as the force F19 and has magnitude
equal to the magnitude of that force divided by the mass:

a19 5 5

5 1.29 m/s2

90.0 N
}
70.0 kg

F19
}
m

F19
}
m

S F
}

m
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Fig. 4-10, cont’d.

Fig. 4-11 A freely falling body of mass
m experiences acceleration g.



Although we have derived this equation for a falling body, we may apply it quite
generally to any body on or near the earth’s surface. The gravitational force arises
from the mutual interaction of the earth and the body. Whenever a body is close to
the earth’s surface, the body experiences a downward force w, equal to the product
of its mass m and gravitational acceleration g. The same force acts irrespective of the
body’s motion or of the presence of other forces. This is our first example of a force
law. It allows us to compute the gravitational force on a body (in other words, the
body’s weight), given its physical environment (on or near the surface of the earth).
We shall use this force law frequently in solving problems.
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EXAMPLE 4 Forces on a Man

Find the forces acting on a standing man whose mass is
90.0 kg.

SOLUTION  According to Eq. 4-5, the man experiences a
force w in the downward direction (the direction of g), and the
magnitude of this force is

w 5 mg 5 (90.0 kg)(9.80 m/s2) 5 882 N

or

w 5 882 N1 2 5 198 lb

Since the man is standing at rest, his acceleration is zero and
so the second law implies that there must be another force to
cancel the weight and produce a resultant force equal to zero,
as shown in Fig. 4-12. This other force is produced by the con-
tact between his feet and the surface on which he is standing.
We denote this surface force by S and use the second law to
solve for it:

S F 5 ma 5 0

S 1 w 5 0

Thus S 5 2w

This equation says that the forces are oppositely directed and
have equal magnitudes:

S 5 w 5 882 N

We could have just as easily solved this problem using
Newton’s second law in component form. Taking the positive
y-axis in the upward direction, we have

S Fy 5 may 5 0

or S 2 w 5 0

Therefore S 5 w 5 882 N

The forces S and w are equal here because the man is sta-
tionary. It is possible for him to increase the force S by push-
ing down on the ground with a force greater than his weight.
By Newton’s third law, the upward force on his feet will then
be greater. There would then be a resultant upward force of
magnitude S 2 w, and the man would accelerate upward. In
other words, by pushing on the ground with a force greater
than his weight, the man can jump.

1.00 lb
}
4.45 N

Fig. 4-12



Variation of Weight on Earth

The value of g varies slightly from point to point on earth. (The variation arises from
several factors, to be discussed in Chapter 6.) In particular, g is a function of latitude.
For example, at the equator g 5 9.78 m/s2, at 408 north latitude g 5 9.80 m/s2, and at
the North Pole g 5 9.83 m/s2. It follows from Eq. 4-5 (w 5 mg) that the weight of
any object also varies slightly over the surface of the earth. The value of g is less at
the equator than at the North Pole by 0.05 m/s2, which is about 0.5%. Thus the weight
of a body is also 0.5% less at the equator than at the North Pole. If you weigh 1000 N
(about 225 lb) at the North Pole, you can “lose” about 5 N, or 1 lb, by moving to the
equator! You won’t be any slimmer, though, because your mass is unchanged.

Fundamental Forces

In light of the apparent diversity of forces one observes in nature, it is a wonderful
fact that there are only four fundamental kinds of force:

Gravitational Force The force of gravity on earth is a special case of the grav-
itational interaction—that occurring between the earth and a body on or near its sur-
face. We shall see in Chapter 6 that gravitation is a universal phenomenon; an at-
tractive gravitational force acts between any two bodies anywhere in the universe.

Electromagnetic Force Magnetic forces and forces of static electricity are ex-
amples of the electromagnetic interaction, which acts between particles having elec-
tric charge. Electromagnetic forces are discussed in Chapters 17 to 22.

Nuclear Forces There are two fundamental nuclear forces: the strong interac-
tion and the weak interaction. The strong interaction is responsible for the stability
of the atomic nucleus, whereas the weak interaction is responsible for the type of ra-
dioactivity known as “beta decay.” These forces are discussed in Chapter 30.

By the 1970s physicists had discovered that the electromagnetic and weak forces
can be regarded as different manifestations of a single force, called the “electroweak
force.” Some physicists continue to work toward a further unification, developing
“grand unified theories,” which, if successful, will unify the strong force and the
electroweak force. An even more ambitious goal is the unification of all the funda-
mental forces, including gravity.

The struggle to find unity in the forces of nature is an ongoing one. At one time
electricity and magnetism were believed to be unrelated phenomena. As a result of
discoveries in the nineteenth century, however, we now know that the force between
electric charges and the force between magnets are special examples of a more gen-
eral electromagnetic interaction. Viewed at the most fundamental level, maybe there
really is only one force.

Derived Forces

All forces in nature can in principle be derived from one of the fundamental forces.
In particular Eq. 4-5 (w 5 mg) can be derived from the general gravitational force
law, as we shall show in Chapter 6.

All contact forces arise from electromagnetic interactions between the charged
particles in the bodies making contact. For example, the collision of billiard balls, a
boxer’s punch, the pressure on a body submerged in water, and the frictional force on
a car’s tires all arise from electromagnetic forces acting between the interacting bod-
ies. Even the forces holding matter together—atom to atom—are electromagnetic in
origin.

Fig. 4-13 (Physics Today 41:9, Sept 1988.)
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Tension

Typically the forces acting between the parts of a solid body are complex, and so it
would be very difficult to find a general force law for computing them. The special
case of a flexible body, such as a rope or a string, is somewhat simpler. Again it
would be difficult to find an expression for the magnitude of the forces acting within
the string, since such an expression depends on particular qualities of the string.
However, we can say something about the direction of these forces.

The fact that a string is flexible means that it bends when you push on it. In other
words, a string cannot transmit a push. It can of course transmit a pull. The shape of
the string adjusts itself so that this force acts along the string. Any section of a flexi-
ble rope or string exerts a force on any adjacent section. This force, called “tension,”
is a pull tangent to the string (Fig. 4-14).
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Fig. 4-14 (a) In a tug-of-war, the rope is under great tension, meaning that there
is a large tension force exerted by any section of the rope on an adjacent section.
(b) A much greater tension is present in the cables supporting the Golden Gate
Bridge. At point P, the section to the right of P exerts a force T on the section to
the left of P. (There is also a reaction force, not shown in the figure.)

The cable consists of 27,572 strands of
flexible wire.



Fig. 4-16 The force F exerted by a spring on a block attached to the spring varies in magni-
tude and direction, depending on the compression or stretching of the spring.
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Fig. 4-15 Forces on a mass suspended
from a spring.

Spring Force

The force exerted by a stretched spring is a particularly simple example of a contact
force. When a spring is stretched, some of the adjacent molecules within the spring
are pulled slightly farther apart from each other, and an attractive electromagnetic
force attempts to pull them back to their original positions. Compression of a spring
also produces a force in the spring. In this case, adjacent molecules are pushed to-
gether, and it is a repulsive electromagnetic force that is at work, attempting to push
the molecules back to their original positions.

When an object hangs vertically at rest from a spring, Newton’s second law pre-
dicts that the spring exerts a force F sufficient to cancel the object’s weight (Fig. 4-
15). Thus the force exerted by the spring is equal in magnitude to the weight sup-
ported. We can experimentally determine a force law for a stretched spring by hang-
ing weights from the spring and measuring the corresponding stretch. When we do
so, we find that most springs stretch or compress in direct proportion to the force ap-
plied to them, so long as the amount of stretching or compression is not too large. Put
another way, the magnitude of the force F exerted by the spring is directly propor-
tional to the spring’s change in length D,. This may be expressed

F 5 k D,

where k is called the force constant of the spring. The force constant indicates the
stiffness of the spring. The larger the value of k, the stiffer the spring, that is, the
larger the force that must be applied to produce a given change in length D,.

We can express the spring force law in a useful alternative form, a form that indi-
cates the direction as well as the magnitude of the spring force. Consider the force F
exerted on a block by a horizontal spring, as shown in Fig. 4-16. The origin of the
x-axis is chosen at the position of the block for which the spring is relaxed (neither
stretched nor compressed). The magnitude of x gives the spring’s change in length
(D,) as it is either stretched or compressed. When x is positive, the spring is stretched
and exerts a pull to the left, so that Fx is negative. When x is negative, the spring is
compressed and exerts a push to the right so that Fx is positive. In either case, the sign
of Fx is opposite the sign of x. Both the magnitude and the direction of the spring
force are indicated by writing the force law in the form

Fx 5 ]kx (4-6)

(a) (b) (c)



The Concept of Force
Force is a subtle physical concept, one that developed over hundreds of years. It is
therefore not surprising that understanding the precise nature of this concept requires
some careful thought. We began our discussion of force in this chapter with the sim-
ple qualitative concept of a push or a pull. With our discussion of Newton’s first and
second laws of motion, we arrived at a refinement of the force concept as that which
tends to produce acceleration. It is sometimes stated that force is “defined” by New-
ton’s second law to be mass times acceleration. The difficulty with this kind of state-
ment is that it leaves the impression that the second law is merely a definition* and
therefore that it says nothing substantive about nature. But implicit in the second law
is the idea that there are force laws—equations for computing the force on a body
from knowledge of its physical environment.

The essential physical fact is that the interaction between an object and its physi-
cal environment can produce an acceleration of the object. If there were only one
kind of force in nature, we could express the relationship between the acceleration
and the environment directly and eliminate the concept of force. As it is, there are
different kinds of interactions in nature and many different force laws.

Thus force is a useful intermediate concept—a unifying element in the logical
structure of physics. The force concept is a way of relating the motion of a body to the
body’s surroundings. We think of a body experiencing “forces” produced by other
bodies in the surroundings. Each force is a vector whose magnitude and direction can
sometimes be computed from one of a number of force laws. When all the forces act-
ing on the body are known, the second law can be used to find its acceleration.

*However, the second law is used to define the unit of force (1 N 5 1 kg-m/s2).
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EXAMPLE 5 Mass on a Spring

Find the instantaneous acceleration of a 1.00 kg mass sus-
pended from a spring of force constant 5.00 N/cm, when the
spring is stretched 10.0 cm. The mass is initially at rest.

SOLUTION  The forces F and w acting on the mass are
shown in Fig. 4-17. We take the y-axis to be positive in the up-
ward direction. Using Eq. 4-6 with y substituted for x, we ob-
tain the y component of the force exerted on the mass by the
spring:

Fy 5 ]ky 5 ](5.00 N/cm)(]10.0 cm) 5 150.0 N

The only other force acting on the mass is its weight w, which
acts along the negative y-axis and has magnitude given by
Eq. 4-5:

w 5 mg 5 (1.00 kg)(9.80 m/s2) 5 9.80 N

The spring force exceeds the weight. Therefore the second
law predicts an upward acceleration:

ay 5 5

5 40.2 m/s2

The acceleration we have calculated is instantaneous, corre-
sponding to a particular value of y. The acceleration is not a
constant. As the mass moves, the length of the spring changes,
and therefore the force the spring exerts also changes. The
changing force produces changing acceleration.

50.0 N 2 9.80 N
}}

1.00 kg
S Fy
}

m
Fig. 4-17



Applications of Newton’s Laws of Motion
As stated at the beginning of this chapter, there are two kinds of problems in classi-
cal mechanics: (a) to find unknown forces acting on a body, given the body’s accel-
eration, and (b) to predict the future motion of a body, given the body’s initial posi-
tion and velocity and the forces acting on it. For either kind of problem, we use New-
ton’s second law (S F 5 ma). The following general strategy is useful for solving
such problems:

1 Choose a body to which you will apply Newton’s second law and isolate that
body by drawing a diagram of it free of its physical surroundings. The body
chosen is called a free body, and the diagram, which will include forces as de-
scribed in step 2, is called a free-body diagram.

The free body may be a whole body, part of a body, or a collection of bod-
ies. We may apply the second law to any system, as long as the acceleration a
is the same for all parts of that system. In this case, the system behaves as a par-
ticle and Newton’s second law is valid (see Problem 52). This condition on a is
satisfied for any body at rest, such as in Ex. 4, where a 5 0 for all parts of the
human body, or for any rigid body moving without rotating,* as for the mass
on the spring in Ex. 5.

2 Identify all the forces exerted on the free body by objects in the surroundings,
and draw these forces in the free-body diagram. Any object that is in contact
with the free body will exert a force on it. In addition, there may be various non-
contact forces: gravitational, electric, or magnetic. In this chapter the only non-
contact force we shall need to consider is the weight of the object.

Do not include in the free-body diagram the forces exerted by the free body
on the surroundings. Include only forces acting on the body.

Nor should you include forces acting between parts of the free body. Thus in
Ex. 4 we considered the standing person as a particle, ignoring the human
body’s internal structure. Of course the body has various parts, each of which
exerts forces on other parts. These are internal forces, however, and only ex-
ternal forces should be included in the free-body diagram because only
these forces determine the free body’s acceleration.

At times we may be interested in computing forces that are normally re-
garded as internal forces. We can compute such forces if we make an appro-
priate choice of the body to which we apply Newton’s second law, so that these
forces are external to the body. For example, we may find the tension in a rope
by choosing a section of the rope as the free body, so that the tension is an ex-
ternal force.

3 Choose an inertial reference frame with convenient coordinate axes, apply
force laws, and apply Newton’s second law in component form. This step may
require resolving force vectors into their components along the coordinate axes.

If the choice of the free body was a good one, there will be enough informa-
tion to solve for the unknowns in the problem. Some problems may require the
analysis of two or more related free-body diagrams.

*The particles of a rotating body do not all experience the same acceleration. However, in the next chap-
ter we shall find that Newton’s second law may still be used to describe the motion of a certain point—the
center of mass of the body.

4-8

CHAPTER 4 Newton’s Laws of Motion102



4-8 Applications of Newton’s Laws of Motion 103

(a) (b) (c)

EXAMPLE 6 Finding the Tension in a Cable

A block of marble whose weight is 2.00 3 104 N is suspended
from a cable supported by a crane (Fig. 4-18a). The cable’s
weight is 4.00 3 102 N. (a) Find the tension in the top and bot-
tom of the cable when the block and cable are both at rest. (b)
Find the tension in the top and bottom of the cable when the
block is accelerating downward at the rate of 2.50 m/s2.

SOLUTION  (a) To find the tension in the top of the cable,
choose as a free body the block and cable. Such a choice
makes the tension T1 an external force. This tension force is
the only contact force acting on the system. The only other ex-
ternal forces are the weight of the block wb and the weight of
the cable wc . The three external forces are shown in the free-
body diagram of Fig. 4-18b.

Since the system is unaccelerated, we know from Newton’s
second law that the vector sum of the external forces equals
zero. We choose our coordinate axes as indicated in Fig. 4-
18b so that all forces lie along the y-axis and we need only ap-
ply the equation

S Fy 5 0

From our free-body diagram, we see that T1 acts along the
positive y-axis and wc and wb act along the negative y-axis.
Thus

T1 2 wc 2 wb 5 0

Solving for T1, we obtain

T1 5 wc 1 wb 5 4.00 3 102 N 1 2.00 3 104 N

5 2.04 3 104 N

Next we find the tension in the bottom of the cable by
choosing the block and a small section of cable at the bottom
as the free body (Fig. 4-18c). The tension T2 and the weight wb

are the only external forces. Again we apply the second law:

S Fy 5 0

T2 2 wb 5 0

T2 5 wb 5 2.00 3 104 N

The values for T1 and T2 are not surprising. Tension T1 in the
top of the cable balances the combined weight of the cable and
block, whereas tension T2 in the bottom of the cable balances
the weight of the block alone.

(b) Here the block and cable have an acceleration ay 5 ]2.50
m/s2. We shall apply Newton’s second law and shall therefore
need to find the masses of the block and the cable, mb and mc,
using the force law w 5 mg:

mb 5 5

5 2040 kg

mc 5 5

5 40.8 kg

We again use the free body shown in Fig. 4-18b to solve for
T1, applying Newton’s second law:

S Fy 5 may

T1 2 wc 2 wb 5 (mc 1 mb)ay

T1 5 wc 1 wb 1 (mc 1 mb)ay

5 4.00 3 102 N 1 2.00 3 104 N 1
(2040 kg 1 40.8 kg)(]2.50 m/s2)

5 1.52 3 104 N

And using Fig. 4-18c, we find the tension T2:

S Fy 5 may

T2 2 wb 5 mb ay

T2 5 wb 1 mb ay

5 2.00 3 104 N 1 (2040 kg)(]2.50 m/s2)

5 1.49 3 104 N

Notice that the tensions T1 and T2 are now less than the
weights supported. The reason is that the weights are acceler-
ating downward. If the acceleration were equal to g, the ten-
sion forces would be zero.

4.00 3 102 N
}}

9.80 m/s2

wc
}
g

2.00 3 104 N
}}

9.80 m/s2

wb
}
g

Fig. 4-18



It is a good approximation to ignore the mass of a cable, rope, or string whenever
this mass is much less than other masses in a problem. The tension then is transmit-
ted undiminished throughout, a fact that can be seen in the preceding example when
we set mc and wc equal to zero. Then T1 5 T2 in both parts a and b.

CHAPTER 4 Newton’s Laws of Motion104

EXAMPLE 7 Forces on a Foot

Find the forces on each foot of a woman standing at rest if her
weight of 575 N (129 lb) is evenly distributed between her
two feet. Neglect the weight of the foot.

SOLUTION  To solve for the forces exerted on the feet by
the supporting surface, we choose the woman as the free body.
The weight w and two equal contact forces S are the only ex-
ternal forces acting on the body (Fig. 4-19a). Applying New-
ton’s second law, we solve for the magnitude of S:

S Fy 5 may 5 0

S 1 S 2 w 5 0

S 5 5 5 288 N   (about 65 lb)

We have found the force exerted on either foot by the sup-
porting surface, but this is not the only force acting on the
foot. In addition, the leg and upper body exert a downward
force on the foot. To solve for this unknown force, we choose
the foot alone as the free body and draw our free-body dia-
gram (Fig. 4-19b), with two external forces: S, produced by
the contact with the supporting surface, and F, produced by
the contact with the leg and upper body. We neglect the
weight of the foot, which is small compared with these other
forces. Newton’s second law implies that the two forces
cancel:

F 5 ] S

F 5 S 5 288 N

The two forces F and S are both equal in magnitude to half the
weight of the body. In other words, half the weight of the body
pushes down on each foot and is supported by the surface. The
two opposing forces F and S produce no acceleration of the
foot, but they do cause some compression.

575 N
}

2
w
}
2

Fig. 4-19
(a) (b)
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EXAMPLE 8 Forces on Accelerating Blocks

Two blocks are pushed along a frictionless horizontal surface
by a constant 6.00 N force (Fig. 4-20). Find the acceleration of
each block and the forces on it, given that m1 5 1.00 kg and
m2 5 2.00 kg.

SOLUTION  We may choose m1, m2, or the combination of
m1 and m2 as a free body, since m1 and m2 have a common ac-
celeration. The three free-body diagrams are shown in Fig.
4-21. Notice that there is a contact force F2 exerted on m2 by
m1 and a reaction force F29 exerted on m1 by m2. This contact
force must be smaller than the applied force F1; otherwise
there would be no net force to provide for the acceleration
of m1.

In solving this problem, we begin with the free-body dia-
gram of the two-block combination because in the other dia-
grams there are too many unknowns. There is no motion in the
vertical direction, and thus ay 5 0 and the surface forces and
weights cancel. We apply Newton’s second law to the motion
along the x-axis and solve for ax:

S Fx 5 max

F1 5 (m1 1 m2)ax

ax 5 5

5 2.00 m/s2

Now that we have found ax, we may apply Newton’s sec-
ond law to m2 and solve for the unknown F2:

S Fx 5 max

F2 5 m2 ax 5 (2.00 kg)(2.00 m/s2)

5 4.00 N

We can check this result by applying Newton’s second law to
m1 and solving for ax:

ax 5

5 }
F1 2

m

F2
} 5

5 2.00 m/s2

This, of course, agrees with our previously computed value
of ax.

6.00 N 2 4.00 N
}}

1.00 kg

S Fx
}

m

6.00 N
}}
1.00 kg 1 2.00 kg

F1
}
m1 1 m2

Fig. 4-20

Fig. 4-21
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EXAMPLE 9 Tension in Strings Supporting a Weight

A 10.0 N weight is supported at rest by string of negligible
mass, as shown in Fig. 4-22a. Find the tension in each string.

SOLUTION  The tension throughout the vertical string is
obviously just equal to the weight supported—10.0 N. (You
can prove this result by choosing the weight and any section
of the vertical string as a free body and applying Newton’s
second law.)

The tension in the other two strings is not so obvious. We
must choose a free body for which these forces are external
forces and for which there is sufficient information to solve
for the forces. In problems such as this, the right choice for the
free body may not be apparent. There are many bodies one
might choose but from which no information is gained—the
ceiling, for example, or a section of one string. The useful free
body here is either the knot where the three strings meet or the
knot and some section of each string. The three tension forces
are all external to the knot; they are shown resolved into vec-
tor components in the free-body diagram (Fig. 4-22b).

We already know that the tension T3 is 10.0 N. We apply
Newton’s second law in component form to the knot:

S Fx 5 max 5 0

T2 cos 30.0° 2 T1 cos 45.0° 5 0

This gives us a relationship between the two unknowns T1 and
T2. A second equation relating T1 and T2 is obtained when we
equate the sum of the y components of the forces to zero:

S Fy 5 may 5 0

T1 sin 45.0° 1 T2 sin 30.0° 2 T3 5 0

Solving the two linear equations for the two unknowns in
terms of T3 and the angles, we obtain

T1 5

5

5 8.97 N

T2 5

5

5 7.32 N

(8.97 N)(cos 45.0°)
}}}

cos 30.0°

T1 cos 45.0°
}}

cos 30.0°

10.0 N
}}}}
sin 45.0° 1 cos 45.0° tan 30.0°

T3
}}}}
sin 45.0° 1 cos 45.0° tan 30.0°

Fig. 4-22



When a flexible rope or string passes over a frictionless pulley of negligible mass,
the tension is the same on both sides of the pulley. A frictionless and massless pulley
changes the direction of the tension force but leaves the magnitude unchanged (see
Problem 45 of Chapter 9).
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EXAMPLE 10 Atwood’s Machine

Two unequal masses, m1 and m2 > m1, are suspended from op-
posite ends of a rope of negligible mass that passes over and is
supported by a frictionless, stationary pulley of negligible
mass (Fig. 4-23a). The greater mass m2 will accelerate down-
ward and the smaller mass m1 will experience an acceleration
of equal magnitude in the upward direction. By adjusting the
values of m1 and m2, we can make the acceleration as small as
we want. (This simple device is called “Atwood’s machine.”)
Find expressions for the magnitude of the acceleration and the
tension in the rope as functions of m1 and m2.

SOLUTION  First we choose as free bodies the two masses
(Fig. 4-23b). The tension force on each mass is the same, and
the two accelerations a1 and a2 are equal in magnitude and op-
posite in direction. This follows from the fact that when one
mass moves a certain distance upward, the other moves the
same distance downward in the same time interval.

We apply Newton’s second law to each body:

S Fy 5 may

With our choice of coordinate axes, ay 5 1a for m1 and ay 5

]a for m2. Thus we have

T 2 w1 5 m1 a

T 2 w2 5 m2(]a )

We have two linear equations with two unknowns, T and a.
Solving for the unknowns in terms of the masses and weights,
we obtain

a 5 T 5 w1 1

or, using w 5 mg,

a 5 g T 5 g
2m1 m2
}
m2 1 m1

m2 2 m1
}
m2 1 m1

m1(w2 2 w1)
}}

m2 1 m1

w2 2 w1
}
m2 1 m1

Fig. 4-23

(a) (b)



EXAMPLE 11 Instantaneous Force On a Runner’s Foot

Fig. 4-24 shows a simplified model of a force platform used in
biomechanical research to study the force exerted on the
ground by the foot of a running person. Suppose that the plat-
form has a mass of 5.0 kg and each of the four springs has a
force constant of 1.0 3 106 N/m.

At some instant, the vertical springs are compressed
0.50 mm. At the same time, each horizontal spring differs
from its relaxed length by 0.10 mm, the left spring com-
pressed and the right spring stretched. The platform has a ver-
tical component of acceleration of 5.0 m/s2 in the upward di-
rection and a horizontal component of 2.0 m/s2 in the back-
ward direction. Find the horizontal and vertical components of
force on the platform.

SOLUTION  We choose the platform as the free body and
show in the free-body diagram the four forces exerted by the
springs—F1, F2, F3, F4—the weight of the platform w, and the
force exerted by the foot, F5 (Fig. 4-25). We apply Newton’s
second law to the motion along the x-axis and solve for the
horizontal component of F5:

S Fx 5 max

F3 1 F4 1 F5x 5 max

F5x 5 max 2 F3 2 F4

The two horizontal spring forces, F3 and F4, are of equal mag-
nitude k D,. Substituting into the last equation, we obtain

F5x 5 max 2 2k D,

5 (5.0 kg)(]2.0 m/s2) 2 2(1.0 3 106 N/m)(1.0 3 10 ]4 m)

5 ]210 N

Next we apply the second law to the motion along the y-axis:

S Fy 5 may

F1 1 F2 1 F5y 2 w 5 may

F5y 5 may 1 w 2 F1 2 F2

or, using F1 5 F2 5 k D, and w 5 mg,

F5y 5 may 1 mg 2 2k D,

5 (5.0 kg)(15.0 m/s2) 1 (5.0 kg)(9.80 m/s2) 2
2(1.0 3 106 N/m)(5.0 3 10 ] 4 m)

5 ]930 N

At the instant considered, the foot exerts on the ground a
backward force of 210 N (47 lb) and a downward force of
930 N (210 lb). The ground therefore exerts a reaction force of
210 N in the forward direction and 930 N in the upward direc-
tion. The graph in Fig. 4-24 indicates that the vertical force on
the foot of a 68 kg (150 lb) runner reaches a maximum value 

of about 1700 N (380 lb), about 2.5 times the weight of the
runner. This suggests why running on a hard surface without
proper shoes can so easily lead to injuries. A well-cushioned
heel on a running shoe reduces the maximum force on the foot
as it hits the surface by lengthening the time of contact and
thereby reducing the maximum instantaneous acceleration.

Fig. 4-25

Fig. 4-24 A force platform and data for a 68 kg
man running at 3.5 m/s. (From Alexander R McN:
Biomechanics, New York, 1975, Halstead Press.)

C
(a)

(b)
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HAPTER           SUMMARYC

1 Aristotle had to invent an elaborate process in order to
describe the motion of projectiles as forced motion.
He argued that an arrow moves through the air by
pushing aside the air, which then rushes around to the
tail of the arrow and propels it forward. According to
Newton, what force is needed to produce the horizon-
tal component of the arrow’s velocity?

2 You apply the brakes on your car, stopping suddenly,
and are thrown forward. What force is responsible for
your forward motion?

3 As viewed from the earth, a body is at rest. The same
body is viewed by an observer on an escalator moving
at a constant speed of 3 m/s. Are Newton’s laws satis-
fied for this observer?

4 Suppose you are in a completely enclosed compart-
ment in an airplane flying to an unknown destination.
The walls are shielded so that you can’t detect the
earth’s magnetic field, and you are not able to observe
anything else outside the compartment. You place a
ball on the floor, and it remains at rest.
(a) What can you conclude about the velocity of the

plane?
(b) Is there any other experiment you could perform to

determine the plane’s speed or direction of mo-
tion? The compartment is a well-equipped physics
laboratory.

4

Questions
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Mass is a measure of a body’s inertia, that is, its tendency to
resist acceleration. Force is the result of a mutual interaction
between two bodies. Forces can sometimes be calculated
from force laws. Each force on a body tends to accelerate the
body in the direction of the force. This tendency may be op-
posed by the presence of other forces.

Newton’s Laws of Motion

First law If no forces act on a body, the body contin-
ues in its state of rest or of uniform motion in a straight line.

Second law The resultant force on a body equals the
product of the body’s mass and acceleration.

S F 5 ma
or

S Fx 5 max S Fy 5 may

Third law Forces occur in action-reaction pairs—two
forces equal in magnitude and opposite in direction, acting
on two different bodies.

Force Laws

Weight The gravitational force of the earth on a body
of mass m near the surface of the earth is its weight w, where

w 5 mg

Tension The tension in a flexible body, such as a rope
or string, is an attractive force between adjacent sections of
the rope or string, and tangent to it.

Spring force The magnitude of the force exerted by a
spring on an object is related to the change in length D, of
the spring by the equation

F 5 k D,

where k is the force constant of the spring, a measure of its
stiffness. The x component of this force may be expressed as

Fx 5 ]kx

In applying Newton’s second law, any body or combina-
tion of bodies may be used as the free body as long as all
parts of the free body have the same acceleration a. Then one
may draw a free-body diagram, which shows all the external
forces acting on the body. These forces determine the accel-
eration of the body, through the second law. In your analysis
you must use an inertial reference frame, any reference
frame in which Newton’s first law is satisfied, that is, in
which an isolated body is not accelerated. The laws of
physics are valid only in inertial reference frames.



5 Consider a planet the same size as earth, but one on
which a day is much shorter than an earth day. Com-
pared to the surface of the earth, would the surface of
the planet be better or worse, as an approximation to
an inertial reference frame?

6 Is it possible for an object to move along a curved path
without any force acting on it?

7 You are pulling in a fish, using a fishing line that is
very close to its breaking point. Should you (a) pull
the fish in as quickly as possible or (b) pull the fish in
slowly and without jerking the line?

8 If a horse tries to pull a cart, exerting a force on the
cart in the forward direction, the cart will exert a back-
ward force on the horse.
(a) Since these two forces are equal in magnitude and

opposite in direction, is it not then impossible for
the horse and cart to move?

(b) If the horse and cart together are considered as the
free body, what other body exerts the force neces-
sary to accelerate the free body forward?

9 In a tug of war, the winning team pulls on a rope of
negligible mass and drags the losing team across a
line. Does the winning team (a) pull harder on the rope
than the losing team or (b) push harder on the ground
than the losing team?

10 Blocks A and B collide on a frictionless horizontal
surface. Block A, of mass 5 kg, experiences an instan-
taneous acceleration of 10 m/s2 to the right, while
block B experiences an instantaneous acceleration of
2 m/s2 to the left. What is the mass of B?

11 You are an overweight space-age commuter, traveling
from planet to planet and so experiencing varying val-
ues of g. Which way can you be sure the diet you are
following is effective—by measuring (a) your weight
on a spring scale, or (b) your mass on a balance?

12 If the earth’s pull on a 40 N brick is 10 times as great
as its pull on a 4 N book, when both are in free fall,
why do they have the same acceleration?

13 An astronaut of mass m is in a spaceship accelerating
vertically upward from the earth’s surface with accel-
eration of magnitude a. The contact force exerted on
the astronaut has a magnitude given by (a) mg; (b) ma;
(c) m(g 1 a); (d) m(g 2 a); (e) m(a 2 g).

14 A skydiver is observed to have a terminal speed of
55 m/s in a prone position and 80 m/s in a vertical po-
sition. Which of the following can be concluded from
this observation?
(a) The force of gravity on the skydiver is less in the

prone position than in the vertical position.
(b) The force of air resistance on the skydiver is pro-

portional to the speed of the body.
(c) The force of air resistance is greater at 55 m/s in

the prone position than at 80 m/s in the vertical po-
sition.

(d) The force of air resistance at 55 m/s in the prone
position is the same as at 80 m/s in the vertical po-
sition.

(e) None of the above.
15 A heavy blanket hangs from a clothesline. Will the

tension in the clothesline be greater if it sags a little or
if it sags a lot?

16 In analyzing the forces on a halfback running with a
football, a free-body diagram is drawn. If the player’s
entire body is the chosen free body, which of the fol-
lowing forces should not be drawn in the diagram: (a)
his weight; (b) the force exerted on him by the ground;
(c) the force he exerts on the ground; (d) the tension in
the calf muscles?
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1 None, since there is no horizontal acceleration; 3 yes; 5 worse; 7 b; 9 (a) no; (b) yes;
11 b; 13 c; 15 If it sags a little.



1 The same force that gives the standard 1 kg mass an
acceleration of 1.00 m/s2 acts on a body, producing a
horizontal acceleration of 1.00 3 10 ]2 m/s2. No other
horizontal force acts on the body. Find its mass in kg.

2 The same force that gives the standard 1 kg mass an
acceleration of 1.00 m/s2 acts first on body A, produc-
ing an acceleration of 0.500 m/s2, and then on body B,
producing an acceleration of 0.333 m/s2. Find the ac-
celeration produced when A and B are attached and
the same force is applied.

Newton’s Second and Third Laws

(Unless otherwise stated, all systems are assumed to be
viewed from an inertial reference frame.)
3 Is the particle shown in Fig. 4-26 accelerated?

4 Is the particle shown in Fig. 4-27 accelerated?

5 The particle shown in Fig. 4-28 is at rest. Find the
magnitudes of F1 and F2.

6 The particle shown in Fig. 4-29 is at rest. Find the
magnitude and direction of F.

7 A boat is pulled at constant velocity by the two forces
shown in Fig. 4-30. Find the horizontal force exerted
on the boat by the water.

8 A log is dragged along the ground at a constant speed
by a force of 425 N at an angle of 45.08 above the hor-
izontal. Find the horizontal component of force ex-
erted by the ground on the log.

9 The canvas tarpaulin shown in Fig. 4-31 is stretched
by horizontal forces applied by means of ropes. Find
the x and y components of F.

4-5

Problems 111

Problems (listed by section)

Mass4-4

Fig. 4-26

Fig. 4-29

Fig. 4-30

Fig. 4-31

Fig. 4-27

Fig. 4-28



10 A ball is released from rest in an elevator and falls
1.00 m to the floor in 0.400 s. Is the elevator an iner-
tial reference frame?

11 Three children fight over a small stuffed animal of
mass 0.200 kg, pulling with the forces indicated
in Fig. 4-32. Find the instantaneous acceleration of
the toy.

12 Two hockey players strike a puck of mass 0.300 kg
with their sticks simultaneously, exerting forces of
1.20 3 103 N, directed west, and 1.00 3 103 N, di-
rected 30.08 east of north. Find the instantaneous ac-
celeration of the puck.

13 A girl scout paddling a canoe pushes the water back
with her paddle, exerting a backward force of 155 N
on the water. Find the acceleration of the girl and the
canoe if their combined mass is 90.0 kg.

14 A golf ball of mass 4.50 3 10]2 kg is struck by a club.
Contact lasts 2.00 3 10 ]4 s, and the ball leaves the tee
with a horizontal velocity of 50.0 m/s. Compute the
average force the club exerts on the ball by finding its
average acceleration.

15 A 3.00 kg mass is acted upon by four forces in the hor-
izontal (xy) plane, as shown in Fig. 4-33. Find the ac-
celeration of the mass.

16 A boxer stops a punch with his head. To approximate
the force of the blow, treat the opponent’s glove,
hand, and forearm as a particle of mass 1.50 kg mov-
ing with an initial velocity of 20.0 m/s. Estimate the
force exerted on the head if (a) the hand moves for-
ward 10.0 cm while delivering the blow and then
coming to rest; (b) the head is deliberately moved
back during the punch so that the hand moves forward
20.0 cm while decelerating.

17 A boat and its passengers have a combined mass of
5.10 3 102 kg. The boat is coasting into a pier at a
speed of 1.00 m/s. How great a force is required to
bring the boat to rest in 1.00 3 10]2 s?

18 A 110 kg fullback runs at the line of scrimmage.
(a) Find the constant force that must be exerted on him

to bring him to rest in a distance of 1.0 m in a time
interval of 0.25 s.

(b) How fast was he running initially?
19 A car traveling initially at 50.0 km/h crashes into a

brick wall. The front end of the car collapses, and the
70.0 kg driver, held in his seat by a shoulder harness,
continues to move forward 1.00 m after the initial
contact, decelerating at a constant rate. Find the hori-
zontal force exerted on him by the seat harness.

Force Laws

Weight
20 (a) Compute your weight in N.

(b) Compute your mass in kg and in slugs.
(c) How much weight would you lose in going from

the North Pole, where g 5 9.83 m/s2, to the equa-
tor, where g 5 9.78 m/s2, assuming no loss in
mass?

21 (a) A 1.00 kg book is held stationary in the hand. Find
the forces acting on the book and the reaction
forces to each of these.

(b) The hand now exerts an upward force of 15.0 N on
the book. Find the book’s acceleration.

(c) As the book moves upward, the hand is quickly re-
moved from the book. Find the forces on the book
and its acceleration.

22 Find the vertical force exerted by the air on an air-
plane of mass 5.00 3 104 kg in level flight at constant
velocity.

23 Just after opening a parachute of negligible mass, a
parachutist of mass 90.0 kg experiences an instanta-
neous upward acceleration of 1.00 m/s2. Find the force
of the air on the parachute.

Tension
24 A small weight hangs from a string attached to the

rearview mirror of a car accelerating at the rate of
1.00 m/s2. What angle does the string make with the
vertical?

25 In a tug of war, two teams pull on opposite ends of a
rope, attempting to pull the other team across a divid-
ing line. Team A accelerates toward team B at the rate
of 0.100 m/s2. Find all the horizontal forces acting on
each team if the weight of each team is 1.00 3 104 N
and the tension in the rope is 5.00 3 103 N.
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Spring Force
26 The block in Fig. 4-34 rests on a frictionless surface.

Find its instantaneous acceleration when the spring on
the left is compressed 5.00 cm while the spring on the
right is stretched 10.0 cm. Each spring has a force
constant of 1.00 3 103 N/m.

27 When a 0.100 kg mass is suspended at rest from a cer-
tain spring, the spring stretches 4.00 cm. Find the in-
stantaneous acceleration of the mass when it is raised
6.00 cm, compressing the spring 2.00 cm.

Applications of Newton’s Laws of
Motion

28 Find the tension in the ropes shown in Fig. 4-35 at
points A, B, C, D, and E. The pulleys have negligible
mass.

29 Find the tension in each string in Fig. 4-36.

30 Find the tension in each string in Fig. 4-37.

31 A crate weighing 5.00 3 102 N is lifted at a slow, con-
stant speed by ropes attached to the crate at A and B
(Fig. 4-38). These two ropes are joined together at
point C, and a single vertical rope supports the system.
(a) Find the tension T1 in the vertical rope.
(b) Find the tensions T2 and T3 in the other ropes.
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32 A picture of width 40.0 cm, weighing 40.0 N, hangs
from a nail by means of flexible wire attached to the
sides of the picture frame. The midpoint of the wire
passes over the nail, which is 3.00 cm higher than the
points where the wire is attached to the frame. Find
the tension in the wire.

33 Three blocks are suspended at rest by the system of
strings and frictionless pulleys shown in Fig. 4-39.
What are the weights w1 and w2?

34 Find u and w in Fig. 4-40, assuming that the arrange-
ment is at rest.

35 A person weighing 710 N lies in a hammock sup-
ported on either end by ropes that are at angles of 458

and 308 with the horizontal (Fig. 4-41). Find the ten-
sion in the ropes.

36 Compute the acceleration of each mass in Fig. 4-23a
and the tension in the rope. Let m1 5 1.00 kg and
m2 5 2.00 kg.

37 Two blocks are connected by a string and are pulled
vertically upward by a force of 165 N applied to the
upper block, as shown in Fig. 4-42.
(a) Find the tension T in the string connecting the

blocks.
(b) If the blocks start from rest, what is their velocity

after having moved a distance of 10.0 cm?

CHAPTER 4 Newton’s Laws of Motion114

Fig. 4-39

Fig. 4-40

Fig. 4-41

Fig. 4-42

★



38 Two blocks are initially at rest on frictionless surfaces
and are connected by a string that passes over a fric-
tionless pulley (Fig. 4-43). Find the tension in the
string.

39 Two blocks connected by a string are on a horizontal
frictionless surface. The blocks are connected to a
hanging weight by means of a string that passes over a
pulley (Fig. 4-44).
(a) Find the tension T in the string connecting the two

blocks on the horizontal surface.
(b) How much time is required for the hanging weight

to fall 10.0 cm if it starts from rest?

40 Find the acceleration of the 1.00 kg block in Fig. 4-45.

41 Two children of equal weight are suspended on oppo-
site ends of a rope hanging over a pulley. Child A be-
gins to slide down the rope, accelerating downward at
a rate of 2.00 m/s2. Find the direction and magnitude
of child B’s acceleration, assuming B doesn’t slide.

42 A jet airplane has an instantaneous acceleration of
2.00 m/s2 at an angle of 20.08 above the horizontal.
Compute the horizontal and vertical components of
force exerted on a 50.0 kg passenger by the airplane
seat.

43 A boy weighing 4.00 3 102 N jumps from a height of
2.00 m to the ground below. Assume that the force of
the ground on his feet is constant.
(a) Compute the force of the ground on his feet if

he jumps stiff-legged, the ground compresses
2.00 cm, and the compression of tissue and bones
is negligible.

(b) Compute the force his legs exert on his upper body
(trunk, arms, and head), which weighs 2.50 3

102 N, under the conditions assumed above.
(c) Now suppose that his knees bend on impact, so

that his trunk moves downward 40.0 cm during de-
celeration. Compute the force his legs exert on his
upper body.
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44 A car is stuck in a mudhole. In order to move the car,
the driver attaches one end of a rope to the car and the
other end to a tree 10.0 m away, stretching the rope as
much as possible (Fig. 4-46). The driver then applies
a horizontal force of 4.00 3 102 N perpendicular to
the rope at its midpoint. The rope stretches, with its
center point moving 50.0 cm to the side as a result of
the applied force. The car begins to move slowly.
What is the tension in the rope?

Additional problems

45 A painter on a platform raises herself by pulling on a
rope connected to a system of pulleys (Fig. 4-47). If
the painter and the platform combined weigh 1050 N,
what force must she exert on the rope in order to raise
herself slowly?

46 Three blocks, each having a mass of 1.00 kg, are con-
nected by rigid rods of negligible mass and are sup-
ported by a frictionless surface. Forces F1 and F2, of
magnitude 5.00 N and 10.0 N respectively, are applied
to the ends of the blocks (Fig. 4-48). Find the forces
acting on block B.

47 A football of mass 0.420 kg is thrown 60.0 m by a
quarterback who imparts to it an initial velocity at an
angle of 45.08 above the horizontal. If the quarterback
moves his hand along an approximately linear path of
length 40.0 cm while accelerating the football, what
force does his hand exert on the ball, assuming the
force to be constant?

48 A wet shirt weighing 5.00 N hangs from the center of
a 10.0 m long clothesline, causing it to sag 5.00 cm
below the horizontal. Find the tension in the line.

49 A Ping-Pong ball is given an upward initial velocity.
The force of air resistance causes the times of ascent
and descent to be unequal. Which time is greater?

50 A basketball player stands in front of a basket and,
without bending his knees, jumps straight up. The
player weighs 1.00 3 103 N. His feet push downward
on the floor with a constant force of 2.00 3 103 N for
a time interval of 0.100 s, after which they leave the
floor. Find (a) his acceleration while his feet are in
contact with the floor; (b) his body’s velocity as his
feet leave the floor; (c) the maximum height he moves
upward during the jump.

51 Each of the two identical springs in Fig. 4-49 has force
constant k 5 1.00 3 103 N/m.
(a) Find the unstretched length of each spring.
(b) Find the instantaneous acceleration of the weight

if it is pulled 10.0 cm lower and released.
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52 Consider two particles, of mass m and m9, having a
common acceleration a, as shown in Fig. 4-50. These
particles are subject to equal magnitude internal
forces Fi and F9i, and to external forces Fe and Fe9.
Show that it follows from Newton’s second law ap-
plied to each particle separately that we may apply the
second law to the system of two particles if we use the
net external force, the combined mass m 1 m9, and the
common acceleration a.

53 Find the angles u1 and u2 in Fig. 4-51 if all the weights
are at rest.

54 The force of air resistance R on a freely falling body is
in a direction opposing the velocity and has magni-
tude approximately given by R 5 CAv2, where A is
the cross-sectional area of the body in the plane per-
pendicular to the motion, v is the speed, and C is a
constant depending on body shape and air density.
Show that if the y-axis is taken to be positive in the
downward direction, a falling body experiences an
acceleration ay 5 g(1 2 CAvy

2/w). Show that as ay

approaches zero, vy approaches terminal velocity
vT 5 �Ïww/CwAw.

55 A runner moving through the air experiences a force
R because of the air (Fig. 4-52). This force, which is a
function of the runner’s velocity relative to the air, is
approximately proportional to the square of the rela-
tive speed vr. The magnitude of force R may be ex-
pressed as R 5 CAvr

2, where A is the cross-sectional
area of the body in the plane perpendicular to the mo-
tion. Suppose a runner first moves a distance D along
the ground at constant velocity in the direction of a
steady wind and then moves the same distance in the
opposite direction at the same speed with respect to
the ground. For both parts of the motion, express R in
terms of the runner’s speed v (relative to the ground)
and the speed of the wind vw. By how much does the
average of these two values exceed the average mag-
nitude of R in the absence of wind? This problem il-
lustrates how wind generally produces a higher aver-
age value of air resistance on a runner, even though
the runner runs with the wind the same distance he or
she runs against the wind.

56 In Fig. 4-53 the mass of block A is 10.0 kg and that of
block B is 15.0 kg. The pulley is massless and fric-
tionless.
(a) What is the largest vertical

force F that can be applied
to the axle of the pulley if B
is to remain on the floor?

(b) What will be the accelera-
tion of A when this maxi-
mum force is applied?
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