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Energy

The Concept of Energy

ow fast must a spacecraft move to escape the earth? How much electric power
can be generated using water from a certain waterfall? How many calories do

you burn riding a bicycle uphill? To answer questions such as these we shall use a fun-
damental law of nature—the law of conservation of energy. This law states that
there exists a numerical quantity called “energy” that remains fixed in any
process that occurs in nature. We express the law more concisely by saying that
“energy is conserved.” The law of energy conservation applies without exception to
all systems. If a certain isolated system has, say, 50 units of energy initially, that sys-
tem will continue to have 50 units of energy, no matter what changes the system un-
dergoes. It is possible for a system to lose energy only if that system is not isolated.
Then the energy lost shows up as energy gained by some other system with which the
first system has interacted.

Energy comes in many forms. Electrical energy, chemical energy, nuclear energy,
and thermal energy are some forms of energy we shall study in later chapters. In this
chapter we shall study only mechanical energy, which consists of two distinct types:
(1) kinetic energy, associated with the motion of a body, and (2) potential energy, as-
sociated with the position of a body and a particular kind of mechanical force.

In general, the law of conservation of energy applies to the numerical sum of all
forms of energy. If we add up mechanical energy, electrical energy, chemical energy,
and so forth, the total energy of an isolated system is always constant. In this chapter
we shall see that, under certain special circumstances, a system’s mechanical energy
alone is conserved. We shall show how this principle of conservation of mechanical
energy follows from Newton’s laws of motion. Rather than use Newton’s laws directly
to analyze the forces acting on a system, it is often easier to apply energy principles.
For example, we shall use conservation of energy to calculate how fast a spacecraft
must move to escape the earth (Ex. 7), to find the electric power generated in a certain
Bavarian home using water from a small waterfall (Problem 59), and to estimate the
energy needed to ride a bicycle uphill (Ex. 15).

H

A drawn bow stores energy,
which is transferred to the arrow
as it is shot. Some bows store
enough energy to shoot an arrow
half a mile. (McEwen E et al: Sci Am
264:76 [cover], June 1991.)
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Work and Kinetic Energy
Definition of Work Done by a Constant Force in One Dimension
In this section we shall define work and kinetic energy and then show how they are
related through the work-energy theorem. The full significance of work and kinetic
energy can be appreciated only after you see how they are connected through this im-
portant theorem.

When a force acts through a distance, we say, “The force does work.” More pre-
cisely, the work W done by a constant force F acting on a body moving in a straight
line (Fig. 7-1) is defined to be the product of the force component Fx in the direction
of motion times the distance Dx the body moves:

W 5 Fx Dx (7-1)

If a body does not move, Dx 5 0, and so, even though forces may act on the body,
no work is done by those forces (Fig. 7-2a), and no work is done on a moving body
by any force that is perpendicular to the direction of the body’s motion (Fig.7-2b),
since such a force has a zero component in the direction of motion.

“Work” is a word commonly used to mean human effort. No such meaning is im-
plied by the definition of work used in physics. For example, as you sit studying
physics, you may be making an enormous effort, but there is no work being done, ac-
cording to our definition of work as force acting through a distance. On the other
hand, little or no effort is required to fall onto your bed. And yet work is done by the
force you exert on your mattress and springs as they are being compressed. It is im-
portant not to confuse the physical concept of work with effort or with any other
meaning attached to the word “work” in everyday language.

Units

The unit of work is the unit of force times the unit of distance—the N-m in SI. This
unit is given the name “joule” (abbreviated J), in honor of James Joule, who demon-
strated by numerous experiments in the nineteenth century that heat is a form of
energy:

1 joule 5 1 N-m 5 1 kg-m2/s2 (7-2)

In the cgs system the unit of work is the erg, defined as a dyne-cm. Since 1 N 5 105

dyne and 1 m 5 102 cm, 1 N-m 5 107 dyne-cm or

1 J 5 107 erg (7-3)

In the British system the unit of work is not given a separate name; it is simply called
a “foot-pound,” ft-lb. From the relationships between N and lb and between m and ft,
it is easy to relate J to ft-lb:

1 J 5 0.738 ft-lb (7-4)

(constant force;
linear motion)

7-1
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Fig. 7-1 As a block moves a distance
Dx, the force F does work Fx Dx.

Fig. 7-2 (a) No work is done on a
stationary barbell either by the barbell’s
weight w or by the force F exerted by
the weight lifter. (b) No work is done
by forces N and w acting on a skater,
since neither force has a component in
the direction of motion.

(a) (b)



Net Work

We define the net work on a body, Wnet, to be the sum of the work done by all the
forces acting on the body:

Wnet 5 SW (7-5)

Net work is important because the effect of work on the energy of a body depends
only on the net work, as we shall see when we discuss the work-energy theorem.
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EXAMPLE 1 Pulling a Suitcase

An airline passenger pulls his suitcase a horizontal distance of
40.0 m, exerting a force F of magnitude 25.0 N, directed 30.0°
above the horizontal (Fig. 7-3). Find the work done by the
force F.

SOLUTION To find the work we apply the definition
(Eq. 7-1), using the component of force in the forward direc-
tion, the direction of motion.

W 5 FxDx 5 F cos 30.0° Dx

5 (25.0 N)(cos 30.0°)(40.0 m)

5 866 J

EXAMPLE 2 Lifting a Box

A woman slowly lifts a box weighing 40.0 N from the floor to
a shelf 1.50 m above (Fig. 7-4).
(a) Find the work done by the force F the woman exerts on the box.
(b) Find the work done on the box by its weight w.
(c) Find the net work done on the box.

SOLUTION  (a) Since the box is lifted slowly, we assume
that acceleration is negligible and therefore no net force acts
on the box. This means that the woman exerts an upward force
F of magnitude 40.0 N, balancing the box’s weight. The force
F acts in the direction of motion, and so the force component
used in calculating the work WF done by F is the full force of
40.0 N.

WF 5 Fx Dx 5 FDx 5 (40.0 N)(1.50 m)

5 60.0 J

(b) The box’s weight w acts opposite the direction of motion,
and so its component in the direction of motion is negative
(]w). Thus the work Ww done by w is negative.

Ww 5 wx Dx 5 ]wDx 5 ](40.0 N)(1.50 m)

5 ]60.0 J

(c) The net work done on the box is the sum of the work done
by each of the forces acting on the box. Net work equals zero:

Wnet 5 S W 5 WF 1 Ww 5 160 J 2 60 J 5 0

Another way to find net work is to calculate the work done
by the net force. Here the net force is zero, and so the work
done by the net force must also be zero. Thus we get the same
answer for Wnet as we found by adding the work done by each
force. It is easy to show that net work always equals the work
done by the net force:

Wnet 5 S W 5 S (Fx Dx) 5 (S Fx)(Dx) 5 Fnet Dx

Fig. 7-3

Fig. 7-4



Fig. 7-5 The total kinetic energy of
pool balls just after the “break” equals
the kinetic energy of the cue ball before
the break . Kinetic energy is conserved.
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Fig. 7-6 A body moves from x0 to x,
and the forces acting on the body do
work.

Kinetic Energy

A body’s kinetic energy K is defined to be half its mass m times the square of its
speed v.

K 5 mv2 (7-6)

From its definition, kinetic energy must have units equal to mass units times velocity
units squared—SI units of kg-(m/s)2. Since 1 N 5 1 kg-m/s2, the SI unit of kinetic en-
ergy is N-m, or J, the same as the unit of work.

Sometimes kinetic energy is a conserved quantity. The simplest case of this is
when a body moves at constant speed. Since both mass m and speed v are constant,

the body’s kinetic energy mv 2 is also constant. Kinetic energy is conserved. A

more interesting example of conservation of kinetic energy occurs in the game of
pool. Suppose a cue ball is shot into a rack of balls (Fig. 7-5). If the cue ball has a
mass of 0.2 kg and is initially moving at 10 m/s, its initial kinetic energy

K 5 mv2 5 (0.2 kg)(10 m/s)2 5 10 J

The other balls are initially at rest and so have no kinetic energy. Just after the colli-
sion, the kinetic energy of 10 J is shared among all balls. That is, if we add up the ki-
netic energies of all the balls just after the collision, the total is approximately 10 J.
Kinetic energy is approximately* conserved in the collision of pool balls.

Work-Energy Theorem

Suppose a body moves along the x-axis and is subject to a number of constant forces
F1, F2, F3, . . . , whose resultant S F is a constant force directed along the x-axis (Fig.
7-6). According to Newton’s second law, the body experiences an acceleration ax

given by
ax 5 (7-7)

where m is the body’s mass. The body is accelerated, and so, as it moves through the
distance Dx 5 x 2 x0, its velocity changes. The final velocity vx is related to the ini-
tial velocity vx0, to the distance Dx, and to the acceleration ax by the kinematic equa-
tion (from Chapter 2) vx

2 5 vx 0
2 1 2ax Dx. There is only one component of velocity,

v
2 5 vx

2, and so we may write the kinematic equation as

v
2 5 v0

2 1 2ax Dx

Substituting for ax from Newton’s second law (Eq. 7-7), we obtain

v
2 5 v0

2 1 21 2(Dx)

Multiplying this equation by m/2 and rearranging, we can express this result

mv2 2 mv0
2 5 S (Fx Dx) (7-8)

Thus we equate the change in kinetic energy (DK 5 K 2 K0 5 mv2 2 mv0
2) to the

net work [Wnet 5 S W 5 S (Fx Dx)].

DK 5 Wnet (7-9)

This result is known as the work-energy theorem.

*A small part of the initial kinetic energy is converted to thermal energy and sound energy during the col-
lision, and so kinetic energy is not exactly conserved.
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According to the work-energy theorem, when there is no net work done on an ob-
ject, the object’s change in kinetic energy is zero, or, in other words, kinetic energy
is conserved. In Fig. 7-2a no work is done on the barbell, and so the barbell’s kinetic
energy remains constant—equal to zero. The skater in Fig. 7-2b has nonzero kinetic
energy that remains constant, assuming that forces N and w are the only forces, since
neither of these forces does work.

Fig. 7-7 shows two examples in which kinetic energy is not conserved. In Fig.
7-7a positive work is done by the normal force on a diver and negative work is done
by the diver’s weight, as the diver springs upward. Since the normal force is greater
than the weight, the net work is positive. So, according to the work-energy theorem,
the diver’s kinetic energy increases (DK . 0); in other words, the diver’s speed in-
creases. We can also see this from Newton’s second law: the resultant force produces
an upward acceleration.

In Fig. 7-7b only the force of friction does work on a baseball player sliding into
second base. The other two forces have no component in the direction of motion and
therefore do no work. The work done by friction is negative, since this force has a
negative component along the line of motion. Thus the net work on the sliding player
is negative, and, from the work-energy theorem, the player loses kinetic energy
(DK , 0); in other words, the player slows down. We can also predict this by apply-
ing Newton’s second law: the resultant force is the frictional force, which produces
an acceleration opposite the direction of motion and therefore slows the player.
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Fig. 7-7 (a) A diver’s kinetic energy increases as she springs
upward because positive net work is done on her, since N > w.
(b) A baseball player’s kinetic energy decreases as he slides into
second because friction does negative work on him.

EXAMPLE 3 Final Speed of a Sled

A child and sled having a combined weight of 335 N start
from rest and slide 25.0 m down a 15.0° slope. Find the speed
of the sled at the bottom of the slope, assuming negligible air
resistance and a constant force of kinetic friction of 20.0 N.

SOLUTION  The speed at the bottom of the slope may be
calculated once the kinetic energy at that point is found from
the work-energy theorem. Since the sled is initially at rest,
K i 5 0. So the change in kinetic energy, which according to
the work-energy theorem equals the net work done by the
forces acting on the sled (shown in Fig. 7-8), is

DK 5 Kf 2 0 5 Wnet 5 WN 1 Ww 1 Wf

The normal force does no work, since it is perpendicular to the
motion:

WN 5 0

The weight does positive work, since there is a positive com-
ponent wx in the direction of motion:

Ww 5 wx Dx 5 (335 N)(cos 75.0°)(25.0 m) 5 2170 J

The work done by friction is negative since f opposes the
motion:

Wf 5 fx Dx 5 (]20.0 N)(25.0 m) 5 ]500 J

Adding the various work terms, we obtain

Kf 5 0 1 2170 J 2 500 J 5 1670 J

Since Kf 5 mvf
2, vf may be expressed

vf 5 !w

Since the mass m 5 w/g 5 (335 N)/(9.80 m/s2) 5 34.2 kg, we
find

vf 5 !ww
5 9.88 m/s

2(1670 J)
}}

34.2 kg

2Kf}
m

1
}
2

Fig. 7-8

(a) DK = Wnet > 0

(b) DK = Wnet < 0
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Fig. 7-9 (a) Force F acts on a particle
as it moves along a curved path from i
to f. (b) The total work done by F on
the particle is the sum of the work done
over small subintervals of length Ds.

Fig. 7-10 The work done by the force
F on a particle as it moves from i to f
equals the area under the graph of Fs

versus s (shaded blue).

Variable Force in Three Dimensions

We could have solved the previous example by first calculating the resultant force on
the sled, then using Newton’s second law to find the sled’s acceleration, and finally
applying the kinematic equation relating the velocity to the acceleration and dis-
tance. So the work-energy theorem has merely provided an alternative method for
solving this kind of problem. However, the work-energy theorem may be generalized
to deal with problems in which the forces are not constant and for which the path may
not be linear. Direct solution of such problems from Newton’s second law is much
more difficult, since acceleration is not constant and the kinematic equations derived
in Chapter 2 are not valid. The energy method then offers a significant advantage.

Consider a particle moving along a curved path and subject to a single variable
force F, as shown in Fig. 7-9a. Let the path be divided into small intervals of length
Ds, each of which is approximately linear and over each of which F is approximately
constant in magnitude and direction, with a component Fs along the path (Fig. 7-9b).
For each small interval, the change in kinetic energy is approximately equal to Fs Ds,
and therefore the total change in kinetic energy from i to f is approximately equal to
the sum of the Fs Ds terms:

DK 5 Kf 2 Ki < S (Fs Ds) (7-10)

The smaller the intervals, the better the approximation becomes, since then the inter-
vals are more nearly linear and the force more nearly constant over each interval. Eq.
7-10 leads us to generalize our definition of work as follows. The total work done
by a force acting on a particle as the particle moves from position i to position f
is a sum of terms Fs Ds:

W 5 S (Fs Ds) (7-11)

The intervals of length Ds used in this definition of work must be small enough that
Fs is nearly constant over each interval.

Combining the two preceding equations, we may write

DK 5 W

When two or more forces act on a particle moving along a curved path, it is the sum
of the work done by all the forces that equals the change in kinetic energy. In other
words, the change in kinetic energy equals the net work:

DK 5 Wnet (work-energy theorem) (7-12)

Graphical Interpretation of Work

Next we shall interpret our definition of work graphically, a technique that is useful
in evaluating the work done by a varying force. Suppose we graph Fs as a function of
s—in other words, graph the component of force acting on a particle as a function of
the distance the particle moves over some interval i to f. Such a graph is shown in
Fig. 7-10 for an arbitrary force. The interval i to f is divided into small subintervals
of length Ds over which Fs is nearly constant. The product Fs Ds is the area of a sin-
gle rectangle. According to our definition of work (Eq. 7-11), the work is equal to a
sum of terms Fs Ds for very short intervals. Since Fs Ds is the area of a rectangle, the
work is equal to the sum of the areas of all the rectangles. But this is very nearly just
the area under the curve, shaded blue.* Thus we see that the work done by a force
is the area under the Fs versus s curve between the initial and final points.

*The difference between the area of the rectangles and the area under the curve disappears as we make the
rectangles narrower.

(a)

(b)



In the next two sections we shall see how work done by certain forces is related to
another form of energy, called “potential energy.” Under certain conditions the sum
of a system’s kinetic energy plus potential energy is conserved.
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EXAMPLE 4 Speed of an Arrow as it Leaves a Bowstring

The force exerted by a certain bow on an arrow decreases lin-
early after the arrow is released by the archer, starting at a
value Fs 5 275 N when the bow is fully drawn and decreasing
to Fs 5 0 as the arrow leaves the bowstring. The tail of the ar-
row moves from s 5 0 to s 5 0.500 m as the arrow is shot
(Fig. 7-11a). Find the final speed of the arrow, which has a
mass of 3.00 3 10]2 kg.

SOLUTION  After we find the net work, we may use the
work-energy theorem to find the final kinetic energy and the
final velocity. Only the force F does work. This work equals
the shaded area under the curve in Fig. 7-11b—the area of the
triangle of base 0.500 m and height 275 N:

Wnet 5 (275 N)(0.500 m) 5 68.8 J

We apply the work-energy theorem, setting the initial kinetic
energy equal to zero, since the arrow is initially at rest:

DK 5 Kf 2 0 5 Wnet 5 68.8 J

Kf 5 mvf
2 5 68.8 J

Solving for vf , we find

vf 5 !w
5 !ww 5 67.7 m/s2(68.8 J)

}}
3.00 3 1022 kg

2K f}
m

1
}
2

1
}
2

Fig. 7-11

(a)

(b)



Fig. 7-12 A roller coaster moves
along a curved track from point i to
point f. Path I is an alternate path be-
tween the same points.
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Gravitational Potential Energy;
Constant Gravitational Force

In this section we shall find a simple general expression for the work done on a body
on or near the earth’s surface by the constant force of gravity. We shall find that this
work always equals the decrease in a quantity called “gravitational potential energy,”
which depends on the body’s elevation. We shall see that when gravity is the only
force doing work on a body, the sum of the body’s kinetic energy plus its gravita-
tional potential energy is conserved.

Work Done by a Constant Gravitational Force

Suppose a roller coaster starts from rest and accelerates down a curving track, falling
through a vertical distance yi 2 yf, as it moves from point i to point f (Fig. 7-12). We
shall obtain an expression for the work done on the roller coaster by its weight.
Rather than use the actual path from i to f, we use an alternative path (path I in Fig.
7-12) to derive an expression for work, since it is much easier to derive the work for
this alternative path than for the actual path. The expression we obtain, however, will
apply to any path between points i and f, as shown at the end of this section.

Path I consists of a vertical displacement followed by a horizontal displacement.
Work is done by the gravitational force only along the vertical part, for which there
is a constant force mg along the direction of motion (Fig. 7-12). The work WG equals
the product of this force and the distance yi 2 yf:

WG 5 mg(yi 2 yf)

WG 5 mgyi 2 mgyf (7-13)

There is no work done along the horizontal part of path I because the force mg has no
component along the direction of motion.

We have derived Eq. 7-13 by considering the work done by gravity on a roller
coaster for a specific path. However, this equation applies to the work done on any
body of mass m by its weight mg, as the body moves from initial elevation yi to final
elevation yf along any path. According to Eq. 7-13, the work equals the difference in
the values of the quantity mgy, which we call gravitational potential energy and de-
note by UG:

UG 5 mgy (7-14)

Thus the work equals the decrease in gravitational potential energy—the initial value
UG, i minus the final value UG,f:

WG 5 UG,i 2 UG,f (7-15)

7-2



Fig. 7-13 The sum of this falling
body’s kinetic energy and its gravitational
potential energy is a constant 9.8 J. The
body’s total mechanical energy is con-
served.
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For example, suppose a roller coaster weighing 104 N starts at an elevation of
40 m, where its potential energy mgy 5 4 3 105 J, and falls to an elevation of 10 m,
where its potential energy mgy 5 105 J. No matter what path the roller coaster fol-
lows, the gravitational force does work on it equal to its decrease in potential energy
of 3 3 105 J.

Conservation of Energy

Suppose the gravitational force alone does work. Then

Wnet 5 WG 5 UG, i 2 UG,f

From the work-energy theorem, however, we also know that

Wnet 5 DK 5 Kf 2 Ki

Equating these two expressions for the net work, we obtain

Kf 2 Ki 5 UG, i 2 UG,f

Thus, for example, in the case of the roller coaster, if there is negligible work done
by friction or any other force except gravity, the roller coaster will gain kinetic en-
ergy equal to its lost potential energy of 3 3 105 J.

Rearranging terms in the equation above, we can express our result:

Kf 1 UG,f 5 Ki 1 UG, i (7-16)

We define the total mechanical energy E to be the sum of the kinetic and gravitational
potential energies:

E 5 K 1 UG (7-17)

Then Eq. 7-16 may be written
Ef 5 Ei (7-18)

When gravity is the only force doing work on a body, the sum of the body’s ki-
netic energy plus its gravitational potential energy—the total mechanical en-
ergy—is conserved.

As a simple example of conservation of mechanical energy, consider a body in
free fall. As a body falls, its speed increases. Its kinetic energy increases while its po-
tential energy decreases, so that the sum of the two—the total mechanical energy—
remains constant. This is illustrated in Fig. 7-13 for a 1 kg body falling from rest
through a distance of 1 m.

U             K          E = K + U



Fig. 7-14 A projectile has the same
speed at points with the same elevation,
if air resistance is negligible.
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It is a general characteristic of projectile motion that, in the absence of air resis-
tance, the projectile has the same speed for points at the same elevation (Fig. 7-14).
This follows from the fact that the potential energy will be the same at such points,
and conservation of total mechanical energy then implies that the kinetic energy will
also be the same.

EXAMPLE 5 Energy of a Thrown Ball

A ball of mass 0.200 kg is thrown vertically upward with an
initial velocity of 10.0 m/s. Find (a) the total mechanical en-
ergy of the ball, (b) its maximum height, and (c) its speed as it
returns to its original level. Neglect air resistance.

SOLUTION  (a) The total mechanical energy is the sum of
the kinetic energy plus the gravitational potential energy:

E 5 K 1 UG 5 mv2 1 mgy

We take the origin of the y-axis to be the initial position; then
the initial energy E i is purely kinetic:

Ei 5 mv2 1 0 5 (0.200 kg)(10.0 m/s)2 5 10.0 J

Since the gravitational force is the only force doing work on
the ball (with air resistance being neglected), E will remain
equal to 10.0 J throughout the motion of the ball.

(b) When the height is maximum, the ball is momentarily at
rest and K 5 0. The total mechanical energy E is purely po-
tential energy at this point:

E 5 mgy

Solving for y, we obtain

y 5 5

5 5.10 m

(c) When the ball returns to its initial height, y again equals 0,
and the potential energy is zero. Then the total energy is again
purely kinetic, and the kinetic energy therefore equals 10.0 J.
This is the same as the initial value of kinetic energy, and so
the speed of the ball must also be the same.

E 5 K 5 10.0 J

v 5 10.0 m/s

10.0 J
}}}
(0.200 kg)(9.80 m/s2)

E
}
mg

1
}
2

1
}
2

1
}
2

EXAMPLE 6 Speed of a Skier at the Bottom of a Hill

A skier starts from rest at the top of a ski slope and skis down-
hill (Fig. 7-15a). Find the skier’s speed after her elevation de-
creases by 10.0 m, assuming no work is done by friction or air
resistance.

Continued on next page.

Fig. 7-15 (a)



Fig. 7-16 Finding the work done by
gravity as a body moves over an arbi-
trary path from i to f. The body's eleva-
tion decreases by yi 2 yf .
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Proof That Work Done by Gravity Is Path-Independent

We shall now show that the work done by the gravitational force on a body is inde-
pendent of the path the body travels from its initial position to its final position. Fig.
7-16 shows an arbitrary path between points i and f at respective elevations yi and yf.
(To be specific you can think of a roller coaster moving along any path between
points i and f.) Since the motion is not linear, we must use the general expression for
work (Eq. 7-11):

WG 5 S (Fs Ds)

Fig. 7-16 shows a blowup of a short, approximately linear, segment of the path. The
component of the force mg along the path is mg cos u, and so the work done by grav-
ity over the interval Ds is

Fs Ds 5 (mg cos u)(Ds)  5 mg (Ds cos u)

EXAMPLE 6—cont’d

SOLUTION  The forces acting on the skier are shown in
Fig 7-15b. Since the normal force is perpendicular to the mo-
tion, it does no work. Only the weight does work. Therefore
the total mechanical energy is conserved.

Ef 5 Ei

Kf 1 UG , f 5�Ki  1 UG , i

mvf
2 1 0 5 0 1 mgy i

Notice that we have arbitrarily chosen the origin so that
yf 5 0. Solving for vf, we find

vf 5 Ï2gyiw 5 Ï2w(9w.8w0w mw/sw2)w(1w0w.0w mw)w
5 14.0 m/s

The skier would have this same final speed if she had fallen
straight down through a vertical distance of 10.0 m, since her
decrease in gravitational potential energy is determined solely
by her vertical drop.

1
}
2

(b)

Fig. 7-15 (cont’d)



But Ds cos u equals the vertical drop, as indicated in the figure; thus

Fs Ds 5 mg(vertical drop)

We obtain the total work over the entire path by adding the contributions arising
from all vertical drops in the interval from i to f:

WG 5 mg [S (vertical drops)] 5 mg(net vertical drop)
5 mg(yi 2 yf)
5 mgyi 2 mgyf

This is the same result we obtained in Eq. 7-13, thus completing our proof that the
work done by gravity is independent of path.

Gravitational Potential Energy;
Variable Gravitational Force

In the last section we obtained an expression for the gravitational potential energy of
a body on or near the earth’s surface, where the gravitational force is constant. In this
section we shall consider problems in which the gravitational force varies. Suppose
a mass M (a planet, for example) exerts a gravitational force F on a smaller mass m
(such as an approaching spacecraft). This force does work as m moves from an ini-
tial position i to a final position f (Fig. 7-17). If m moves over a significant distance
compared to the separation of the two masses, the gravitational force F is not con-
stant. Then one finds the work done by this force by breaking the path up into short
intervals over which the force is nearly constant and calculating the sum:

W 5 S (Fs Ds)

Evaluation of this sum requires the use of integral calculus, and so we will not eval-
uate it here. But the result turns out to be quite simple. The work done by gravity
equals the decrease in the gravitational potential energy, UG:

WG 5 UG, i 2 UG,f

where the potential energy depends on the distance r between the centers of the two
masses, as given by the equation

UG 5 ] (7-19)

According to this equation, gravitational potential energy is always a negative quan-
tity for all finite values of r. At r 5 ` the potential energy equals zero, whereas at

r 5 R (the radius of the larger body), UG 5 ] . Suppose, for example, a space-

craft of mass m approaches the earth from a very great distance, so that its potential
energy starts out equal to zero. The spacecraft’s potential energy steadily decreases

to a minimum value of ] at the surface of the earth. The potential energy de-

creases by .

7-3
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Fig. 7-17 Finding the work done by
the gravitational force exerted by a mass
M (a planet, for example) on a smaller
mass m, as m moves from i to f.
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Since the work done by gravity equals the difference in two values of the potential
energy, we can always add an arbitrary constant to the potential energy at every point
to provide a more convenient reference level of zero potential energy. Since the same
constant is added to both the initial and final values, the difference in potential energy

is unchanged. For example, if we add the constant to the expression for po-

tential energy given in Eq. 7-19, we obtain a second equally valid potential energy
function UG9:

UG9 5 ] 1 (7-20)

The zero of potential energy in this case occurs when r 5 R:

UG9 5 ] 1 5 0

whereas at r 5 `, we have

UG9 5

The decrease in potential energy of a spacecraft of mass m, approaching the earth
from a great distance, equals

UG9, i 2 UG9, f 5 2 0 5

the same decrease we calculated using the function UG.
Most terrestrial bodies are always at nearly the same distance from the center of

the earth. For example, when a batter hits a home run, the distance of the baseball
from the center of the earth varies little over its trajectory. For such bodies the dif-
ference in gravitational potential energy between any two points can be calculated
using one of the expressions just given (Eq. 7-19 or 7-20), or using Eq. 7-14 (UG 5
mgy), which is valid when the gravitational force is constant. Problem 72 outlines a
proof that these different equations for gravitational potential energy are consistent.
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Fig. 7-18 (a) A meteor. (b) A 15-ton meteorite. A meteor, or
“shooting star,” is the bright streak of light that occurs when a solid
particle (a “meteoroid”) from space enters the earth’s atmosphere
and is heated by friction. Billions of meteoroids hit the earth each
day. You can usually see several meteors per hour on a clear,
moonless night. Fortunately, most meteoroids are no larger than a
small pebble and vaporize before they reach the ground. Occasion-
ally, a very large meteoroid strikes the earth (the fallen body is
called a “meteorite”). For example, one such body formed the
great meteor crater in Arizona over 5000 years ago (see p. 87).
Another weighing about 105 tons destroyed hundreds of square
miles of forest in Siberia in 1908. Most meteoroids originate from
bodies that are already within the solar system.
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Find the speed of a meteoroid (Fig. 7-18) as it first enters the
earth’s atmosphere, if, when it is very far from the earth, it is
moving relatively slowly, so that its initial kinetic energy is
negligible.

SOLUTION  Since the earth’s gravitational force is the
only force acting on the body, its mechanical energy is con-
served:

Ef 5 Ei

or K f 1 UG,f 5 K i 1 UG,i

Since the body is initially very far from the earth, its initial po-
tential energy is approximately zero.

UG,i < 0

And we are given that its initial kinetic energy is approxi-
mately zero.

Ki < 0

Substituting into the energy conservation equation, we obtain

Kf 1 UG,f 5 0

or mvf
2 2 5 0

where m is the meteoroid’s mass, M is the earth’s mass, and rf

is approximately the earth’s radius. Solving for vf , we find

vf 5 !w

5
216.67 3 10 ]11 2(5.98 3 1024 kg)

6.38 3 106 m

5 1.12 3 104 m/s 5 11.2 km/s

Most meteoroids have higher speeds as they enter the atmos-
phere (typically 13 to 70 km/s), since they usually have a sig-
nificant kinetic energy when they are far from the earth.

N2m2

}
kg2

2GM
}

rf

GmM
}

rf
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(a)

(b)

EXAMPLE 7 Speed of a Meteoroid Entering the Atmosphere



Escape Velocity

What goes up must come down. If you throw a ball vertically upward, it always
comes down again. But suppose you could give a ball an extremely large initial ve-
locity, say, 50,000 km/h. The ball would escape the earth, never to return (if we as-
sume negligible air resistance*). Initially, as the ball rose, it would decelerate at the
rate of 9.80 m/s2. However, because of the large initial velocity, it would rise to great
heights, and the gravitational force and gravitational acceleration (which vary as
1/r 2) would decrease as it rose. The ball could then rise still higher with less gravita-
tional acceleration. Eventually, when the ball was far from the earth, the earth’s grav-
ity would no longer produce a significant effect. The ball would then continue with
nearly constant velocity (Fig. 7-19).

Of course it is not possible to simply throw a ball with such a large initial velocity.
However, rocket engines have given spacecraft large enough velocities to leave the
earth’s surface and explore the solar system. Some spacecraft are even able to escape
the solar system.

Suppose that a spacecraft blasts off from a planet and reaches a large velocity
while still close to the planet’s surface. The rocket engines are then turned off. From
that point on, the planet’s gravitational force is the only force acting on the space-
craft, and its mechanical energy is therefore conserved.

Ei 5 Ef

mvi
2 2 5 mvf

2 2

The minimum initial velocity necessary to escape the planet is called the escape ve-
locity, denoted by vE. This is the value of the initial velocity that results in a final ve-
locity vf approaching zero as the distance rf approaches infinity. We insert vf 5 0,
rf 5 `, vi 5 vE and set ri equal to the planet’s radius R, and the energy conservation
equation becomes

mvE
2 2 5 0

Solving for vE, we obtain

vE 5 !w

In deriving this equation, we did not need to assume any particular direction for the
spacecraft’s initial velocity vector, since kinetic energy is a scalar quantity, involv-

ing only the magnitude of velocity (K 5 mv2). So our conclusion is valid for a

spacecraft moving away from the earth in any direction. If the initial speed exceeds
vE, the spacecraft escapes, never to return (unless acted upon by some other force)
(Fig. 7-20).

*Air resistance would actually be a very large force on the ball at such a large velocity. However, our
assumption of negligible air resistance is correct if we take the initial velocity to be the velocity of the ball
at an elevation of about 100 km, above which the atmosphere is very thin.
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Fig. 7-19 A ball leaving the earth with
an extremely large initial velocity would
escape the earth. As it moves away
from the earth, the ball's velocity at first
decreases, but eventually its velocity is
nearly constant.
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Fig. 7-20 If the initial speed is greater
than or equal to the escape velocity
(vE 5 Ï2wGwMw/Rw), the spacecraft will es-
cape the planet.



Spring Potential Energy;
Conservation of Energy

There are other kinds of potential energy besides gravitational; that is, there are other
forces for which the work can be expressed as a decrease in some kind of potential
energy. One of these is spring potential energy. For example, the compressed spring
that launches the ball in a pinball machine stores spring potential energy (Fig. 7-21).
We shall see that under certain circumstances spring potential energy can be con-
verted into kinetic energy (for example, the kinetic energy of the ball in a pinball
machine).

Work Done by a Spring Force

Suppose a body is attached to a spring that can be either stretched or compressed
(Fig. 7-22). As discussed in Chapter 4, the force that the spring exerts on the body
has an x component given by

Fx 5 ]kx (7-22)

where x is the displacement from the equilibrium position. Since this force varies
with position, we compute the work by applying the general definition of work (Eq.
7-11), expressing the work as a sum:

W 5 S (Fx Dx)

As shown in Section 7-1, the work equals the area under the force versus displace-
ment curve, between the initial and final points. The shaded area in Fig. 7-23 gives
the work done by the spring force on a body in contact with the spring, as the body
moves from xi to xf. This area is counted as negative because the force Fx is negative
over the interval, the displacement is positive, and so each of the products in the sum
(Fx Dx) is negative. The shaded area can be computed as the difference in the areas of
two triangles. The larger triangle has a base extending from 0 to xf and an area of
}
1
2

} (]kxf)(xf) 5 ] }
1
2

} kxf
2. The smaller triangle has a base extending from 0 to xi, and an

area of }
1
2

} (]kxi)(xi) 5 ] }
1
2

} kxi
2. The work WS done by the spring is the difference in

these two areas:

WS 5 Area of larger triangle 2 Area of smaller triangle

5 ] kxf
2 2 (] kx i

2)

5 }
1
2

} kx i
2 2 kxf

21
}
2

1
}
2

1
}
2
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Fig. 7-21 When a ball is shot from a
pinball machine, its kinetic energy comes
from the potential energy of a com-
pressed spring.

7-4 Spring Potential Energy; Conservation of Energy 177

EXAMPLE 8 Earth’s Escape Velocity

Find the value of the escape velocity on earth.

SOLUTION  Inserting values for the earth’s mass and
radius into Eq. 7-21, we find

vE 5 ! 5 !
5 1.12 3 104 m/s 5 11.2 km/s

Any object on earth with a velocity of at least 11.2 km/s in any
direction away from the earth will leave the earth and never
return, unless it is acted upon by forces other than just the
earth’s gravitational force.

2(6.67 3 10211 N-m2/kg2)(5.98 3 1024 kg)
}}}}}

6.38 3 106 m
2GM
}

R

Fig. 7-22 The force F exerted on a
body by a spring does work on the
body as it moves.

Fig. 7-23 Finding the work done by
the spring force.
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We see that the work is expressed as the difference in the values of the function

kx2, evaluated at the two points x i and xf. This function we call the spring poten-
tial energy and denote by US.

US 5 kx2 (7-23)

Now we can express the work WS done by the spring as the decrease in spring poten-
tial energy.

WS 5 US,i 2 US,f (7-24)

For example, the work done by a spring of force constant 103 N/m on an attached
mass moving from x 5 0 to x 5 0.1 m is

WS 5 kxi
2 2 kxf

2 5 0 2 (103 N/m)(0.1 m)2

5 ]5 J

The spring does ]5 J of work on the attached mass, meaning that the kinetic energy
of the mass will decrease by 5 J, if no other forces act on it.

Conservation of Energy

If the spring force is the only force that does work on the body, then Wnet 5 WS 5
US,i 2 US,f, and applying the work-energy theorem, we find

DK 5 Wnet

Kf 2 Ki 5 US,i 2 US,f

or Kf 1 US,f 5 Ki 1 US,i (7-25)

In this case we define the total mechanical energy E to be the sum of the kinetic en-
ergy and the spring potential energy:

E 5 K 1 US (7-26)

and Eq. 7-25 may be written

Ef 5 Ei (7-27)

Total mechanical energy is conserved when the spring force is the only force
that does work. This is the same result obtained for the gravitational force, except
that a different kind of potential energy is used here in defining the mechanical en-
ergy. Both the spring force and the gravitational force are called conservative
forces.

(when only the spring
force does work)

1
}
2

1
}
2

1
}
2

1
}
2

1
}
2
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EXAMPLE 9 Energy of a Bow and Arrow

When an archer pulls an arrow back in a bow, potential energy
is stored in the stretched bow. Suppose the force required to
draw the bowstring back in a certain bow varies linearly with
the displacement of the center of the string, so that the bow be-
haves as a stretched spring. A force of 275 N is required to
draw the string back 50.0 cm. (a) Find the potential energy
stored in the bow when fully drawn. (b) Find the speed of an
arrow of mass 3.00 3 10]2 kg as it leaves the bow, assuming
that the arrow receives all the mechanical energy initially
stored in the bow.

SOLUTION  (a) First we find the force constant, using
Eq. 7-22 (Fx 5 ] kx):

k 5 

A force of 275 N is exerted by the string on the arrow in the
forward direction when the string is displaced 50.0 cm back-
wards. Thus

k 5 5 550 N/m

Now we can apply Eq. 7-23 to find the potential energy.

US 5 kx2 5 (550 N/m)(]0.500 m)2

5 68.8 J

(b) Here we assume that no other forces do work, and so me-
chanical energy is conserved. As the bow leaves the string, the
system’s energy is the kinetic energy of the arrow.

Ef 5 Ei

K f 1 US,f 5 K i 1 US,i

mvf
2 1 0 5 0 1 US,i

vf 5 ! 5 !
5 67.7 m/s

2(68.8 J)
}}
3.00 3 1022 kg

2US,i}
m

]275 N
}}
]0.500 m

]Fx}
x

1
}
2

1
}
2

1
}
2

Work Done by Both a Spring Force and a Gravitational Force

Suppose that both a spring force and a gravitational force do work on a body and that
these are the only forces doing work. The net work is then the sum of the work done
by the two forces.

S W 5 WG 1 WS

The work done by each force can still be expressed as a decrease in potential energy
of the respective type.

S W 5 UG,i 2 UG,f 1 US,i 2 US,f

or
S W 5 (UG,i 1 US,i ) 2 (UG,f 1 US,f) (7-28)

We shall find that a generalization of our definition of mechanical energy will al-
low us to maintain the principle of conservation of mechanical energy. We first de-
fine the total potential energy to be the sum of the gravitational potential energy and
the spring potential energy.

U 5 UG 1 US (7-29)

Then Eq. 7-28 may be written

S W 5 Ui 2 Uf

But according to the work-energy theorem, S W 5 Kf 2 Ki. Therefore

Kf 2 Ki 5 Ui 2 Uf

or
Kf 1 Uf 5 Ki 1 Ui



Fig. 7-24 The work done by friction
on a skier moving from A to B depends
on the skier's path between these
points. Friction is a nonconservative
force.
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EXAMPLE 10 Maximum Height of an Arrow

Suppose the arrow described in the preceding example is shot
vertically upward. Find the maximum height the arrow rises
before falling back to the ground. Neglect air resistance.

SOLUTION  The forces acting on the arrow are the spring-
like force of the bowstring (as the arrow is shot) and the grav-
itational force. There are no other forces that do work on the
arrow (neglecting friction and air resistance). Therefore the
total mechanical energy (the sum of kinetic energy, spring po-
tential energy, and gravitational potential energy) is con-
served. To find the maximum height the arrow rises, we
equate the initial energy (when the bow is drawn and the ar-
row is at rest) to the final energy (at the top of the flight).

Ef 5 Ei

K f  1 UG,f 1 US,f 5 K i 1 UG,i 1 US,i

Both the initial and final kinetic energies equal zero. We

choose the origin of our y-axis at the arrow’s starting point, so
that the initial gravitational potential energy is zero. The final
spring potential energy is zero because the bow is no longer
stretched. Thus the conservation of energy equation becomes

UG,f 5 US,i

mgy f 5 US,i

Using the potential energy found in Ex. 9, we solve for yf.

yf 5 5

5 234 m

In solving this problem we did not need to calculate the ar-
row’s speed as it left the bow. Since mechanical energy is con-
served throughout, we simply equated the energy when the
bow was drawn to the energy when the arrow reached its high-
est point.

68.8 J
}}}
(3.00 3 1022 kg)(9.80 m/s2)

US,i}
mg

Conservative and Nonconservative Forces
Conservation of Mechanical Energy
The principle of conservation of total mechanical energy is satisfied when any num-
ber of forces act, so long as the work done by each of the forces can be expressed as
a decrease in some kind of potential energy. When only such forces, called conserv-
ative forces, act on a body, the body’s mechanical energy is conserved—the me-
chanical energy being defined as kinetic energy plus the sum of the potential energies
corresponding to each of the conservative forces. As we have seen, both the gravita-
tional force and the spring force are conservative. Another example of a conservative
force is the electric force. In Chapter 18 we introduce electrical potential energy.
Friction is an example of a force that is not conservative. There is no potential energy
associated with friction, and so the mechanical energy of a body is not conserved
when friction does work on it.

For example, suppose a skier skis down a slope from point A to point B (Fig.
7-24). The work done by friction depends on the path the skier chooses between
points A and B. Little work is done by friction if the path is direct. But if the skier
turns back and forth, there is considerable negative work done by friction, which
tends to cancel the positive work done by gravity and to keep the skier’s kinetic en-
ergy more or less constant.

7-5

If we define the total mechanical energy E to be the sum of the kinetic energy and the
total potential energy, we find once again that the total mechanical energy is con-
served.

Ef 5 Ei (7-30)

E 5 K 1 U (7-31)
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A weight lifter lifts a 1.00 3 103 N (225 lb) weight a vertical
distance of 2.00 m (Fig. 7-25). (a) Find the increase in the to-
tal mechanical energy of the weight, assuming that there is lit-
tle or no increase in the weight’s kinetic energy. (b) Find the
work done by the force F exerted on the weight by the weight
lifter.

SOLUTION  (a) The weight’s change in mechanical en-
ergy, DE, equals its increase in gravitational potential energy.

DE 5 DUG 5 mgyf 2 mgyi

5 mg(yf 2 yi) 5 (1.00 3 103 N)(2.00 m)

5 2.00 3 103 J

(b) The contact force F exerted on the weight by the weight
lifter is a nonconservative force. The work WF done by this
force equals the total nonconservative work done on the
weight and, according to Eq. 7-33, equals the weight’s in-
crease in mechanical energy.

WF 5 S Wnc 5 DE 5 2.00 3 103 J

It is easy to verify this result by directly computing the
work done by F as the product of the force times the distance.
Since the force F balances the weight, it has a magnitude of
1.00 3 103 N. We can compute the work as

Fx Dx 5 (1.00 3 103 N)(2.00 m) 5 2.00 3 103 J

Fig. 7-25 A weight lifter provides a nonconservative force F, do-
ing positive work and increasing the weight’s mechanical energy.

Nonconservation of Mechanical Energy

In general both conservative and nonconservative forces act on a body. If we label
the sum of the work done by all the conservative forces SWc and the sum of the work
done by all the nonconservative forces S Wnc, then the net work is the sum of these
two terms.

Wnet 5 S Wc 1 S Wnc

But S Wc equals the decrease in the total potential energy, Ui 2 Uf, and Wnet equals
the increase in kinetic energy, Kf 2 Ki, and so we find

Kf 2 Ki 5 Ui 2 Uf 1 S Wnc

or

Kf 1 Uf 5 Ki 1 Ui 1 S Wnc

Using the definition of the total mechanical energy (E 5 K 1 U), we may write this
as

Ef 5 Ei 1 S Wnc (7-32)

Using DE to denote the change in mechanical energy, Ef 2 Ei, we may express this
result as

S Wnc 5 DE (7-33)

The nonconservative work may be either positive or negative. If it is positive, E in-
creases, and if it is negative, E decreases. For example, friction is a nonconservative
force that, since it always opposes the motion of a body, always does negative work
on the body. Therefore, when friction is the only nonconservative force acting on
a body, the body’s mechanical energy decreases: DE 5 Wf , 0.

EXAMPLE 11 Increasing the Energy of a Barbell by Lifting It



Fig. 7-26 (a) A block slides down an
incline and then comes to rest. The me-
chanical energy of the block decreases.
(b) An electric motor, powered by a
battery, raises a weight. The mechanical
energy of the weight increases.
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Other Forms of Energy

Eq. 7-32 (Ef 5 Ei 1 Wnc) might seem to imply that the principle of conservation of
energy is not always valid. However, this equation implies only that mechanical en-
ergy is not always conserved. It is always possible to identify a change in energy of
some system that exactly balances a change in the mechanical energy of a body,
though this compensating energy may be some other form of energy. To have a uni-
versal law of conservation of energy, we must enlarge the definition of energy to in-
clude more than just mechanical energy.

Fig. 7-26 shows examples of nonconservation of mechanical energy. In Fig. 7-26a
the friction force on a block sliding down an incline causes the block to come to rest.
Friction does negative work on the block, which accounts for the block’s loss of me-
chanical energy (DE 5 Wf , 0). But there is an increase in the temperature and the
“thermal energy” of both the block and the surface. It turns out that the block’s loss
of mechanical energy is exactly balanced by the increase of thermal energy (to be
studied in Chapter 13). In Fig. 7-26b an electric motor, powered by a battery, raises
a weight. The mechanical energy of the weight increases as the result of the positive
work done by the nonconservative force exerted on the weight by the tension T in
the line (DE 5 WT . 0). It turns out that the weight’s gain in mechanical energy
is balanced by a loss in the battery’s chemical energy (if we assume there is negligi-
ble friction and electrical resistance). The chemical energy of batteries is discussed
in Chapter 19.

Power
The rate at which work is performed by a force is defined to be the power out-
put of the force. The average power, denoted by Pw, is the work divided by the time
Dt over which the work is performed.

Pw 5 (average power) (7-34)

The instantaneous power, P, is the limiting value of this ratio, for a time interval ap-
proaching zero.

P 5 limit
Dt → 0

(instantaneous power) (7-35)

In our previous discussion of work and energy, we did not consider the time dur-
ing which work is performed, or the rate at which work is performed. But this is an
important consideration in many applications. For example, suppose you carry a
heavy piece of furniture up a flight of stairs. The work required is the same, whether
you walk or run up the stairs. However, you may find it difficult or impossible to run
with such a heavy load. The key difference is that if you run, the rate at which work
is done is much greater; that is, the power required is much greater. And you may not
be capable of producing that much power.

W
}
Dt

7-6

W
}
Dt

(a)

(b)



It is sometimes convenient to express the instantaneous power in terms of the in-
stantaneous speed of the body on which work is performed. Since the work done by
force F during a displacement Ds is Fs Ds, the power P may be written

P 5 limit
Dt→0

5 limit
Dt→0

or, since speed v 5 limit
Dt→0

,

P 5 Fsv (7-40)

Ds
}
Dt

W
}
Dt

Fs Ds
}

Dt
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Units

The SI unit of power is the J/s, which is called the “watt” (abbreviated W), in honor
of James Watt, the inventor of the steam engine.

1 W 5 1 J/s (7-36)

In the British system, the unit of power is the ft-lb/s. The horsepower, abbreviated
hp, is a larger, more commonly used unit.

1 hp 5 550 ft-lb/s (7-37)

This definition was introduced by Watt, based on his estimate of the maximum aver-
age power that could be delivered by a typical horse, over a period of a work day.
One horsepower equals approximately three fourths of a kilowatt, or more precisely

1 hp 5 746 W (7-38)

A convenient unit of work or energy is the kilowatt-hour, abbreviated kWh. It is
defined as the work or energy delivered at the rate of 1 kilowatt for a period of 1 hour.
Since W 5 Pw Dt,

1 kWh 5 (1 kW)(1 h) 5 (103 W)(3.60 3 103 s)

1 kWh 5 3.60 3 106 J (7-39)

The kilowatt-hour is commonly used by utility companies to measure the use of elec-
trical energy. For example, if you are using electrical energy at the rate of 2 kW for
a period of 10 hours, your energy consumption is 20 kWh.

A deep sea, underwater observation chamber is raised from
the bottom of the ocean, 1 mile below the surface, by means of
a steel cable. The chamber moves upward at constant velocity,
reaching the surface in 5.00 minutes. The cable is under a con-
stant tension of 2.00 3 103 lb. Find the power output required
of the electric motor that pulls the cable in.

SOLUTION  The power output of the motor is the rate of
production of work by the tension force it supplies.

Pw 5 5 5

5 (3.52 3 104 ft-lb/s)1 2
5 64.0 hp

1 hp
}}
550 ft-lb/s

(2.00 3 103 lb)(5280 ft)
}}}

(5.00 min)(60 s/min)
Fx Dx
}

Dt
W
}
Dt

EXAMPLE 12 The Power Required to Lift a Chamber From the Ocean Floor
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(a) A car weighing 1.00 3 104 N travels at a constant velocity
of 20.0 m/s up a 5.00° incline. Find the power that must be
supplied by the force moving the car up the hill, assuming
negligible friction and air resistance. (b) Find the power that
must be supplied to accelerate the car at 0.100g on level
ground when its speed is 10.0 m/s.

SOLUTION  (a) Since the car’s velocity is constant, the
road must exert a force F that balances the component of
weight down the incline (Fig. 7-27).

F 5 w sin 5.00°

The power delivered by this force is found by applying Eq.
7-40.

P 5 Fsv 5 (w sin 5.00°)v

5 (1.00 3 104 N)(sin 5.00°)(20.0 m/s)

5 1.74 3 104 W

or, since 1 hp 5 746 W,

P 5 (1.74 3 104 W)1 2 5 23.4 hp

(b) From Newton’s second law, we know that the force F
accelerating the car has magnitude

F 5 ma 5 m(0.100g) 5 0.100w

The power supplied by this force is

P 5 Fsv 5 (0.100w)v

5 (0.100)(1.00 3 104 N)(10.0 m/s)

5 1.00 3 104 W  (or 13.4 hp)

1 hp
}
746 W

Closer LookA
Why is it so much harder to run than
to ride a bicycle at the same speed?
When you ride a bicycle, it is after all
your own body that produces your mo-
tion, just as when you run. And yet
cycling requires much less effort than
running. After 30 minutes or an hour of
running along a level road at a moderate
pace, even a well-conditioned runner
may tire, whereas a cyclist can keep the
same pace with little effort (Fig. 7-A). In
everyday language, we say that “running

burns calories” or that “running uses a lot
of energy.” To understand the physical
basis of such expressions, to see why
running requires so much energy and is
so much less energy efficient than bicycle
riding, we shall apply concepts of work
and energy to the human body. In the
next (optional) section, we shall show in
detail how to extend concepts of work
and energy to systems of particles such as
human bodies and machines. Here we
shall simply describe in a general way

how energy is used by the body when
muscles contract and specifically how
that energy is used in running and cycling.

The following are some general prop-
erties of work and energy associated with
muscular exertion:

Work Done by Muscles

Muscles consist of bundles of muscle
fibers. Under tension, these fibers can
shorten, or “contract,” as protein fila-
ments within the fibers slide over each

The Energy to Run

Fig. 7-27

EXAMPLE 13 The Power Required to Drive Uphill or to Accelerate



other. (See Chapter 10, Fig. 10-4 for a de-
tailed description of the mechanism of
muscle contraction.) Contraction of a
muscle fiber means that a force (the ten-
sion in the muscle fiber) acts through a
distance (the distance the fiber con-
tracts). Hence work is done by contract-
ing muscle fibers. The direct effect of a
muscle’s contraction may be to move
one of the body’s limbs. The moving limb,
in turn, may exert a force on the sur-
roundings and do work on the surround-
ings. For example, if you hold a weight in
your hand and contract the biceps muscle
in your arm, your hand and forearm
swing upward, raising the weight. The
work done by your biceps muscle is ap-
proximately equal to the work done by
the force your hand exerts on the weight.
The effect of this work is to increase the
weight’s gravitational potential energy.
(See Chapter 10, Example 3 and Problem
36 for details.)

Heat Generated by the Body When
Muscles Contract

Heat, a disordered form of energy, is gen-
erated whenever muscles do work. Typi-
cally the quantity of heat generated when
muscles contract is about three times as
great as the work done by the muscles.
When your muscles do very much work,
you can usually feel the heat generated by
your body. You may begin to sweat ,
which is a way the body gets rid of excess
heat.

Internal Energy of the Body

The body’s internal energy is the total en-
ergy of all the particles within the body.
Chemical reactions within the body pro-
vide the energy necessary to produce
muscle contraction. The energy released
by these chemical reactions produces the
work and heat associated with muscle
contraction. The body thereby loses
some of its internal energy. Conservation

of energy implies that the body’s loss of
internal energy equals the sum of the
work and heat generated.

Loss of internal energy 5
Work done by muscles 1

Heat generated

When your body loses much internal en-
ergy in a short time interval, you tend to
feel tired. Your body’s internal energy is
replenished by the consumption of food.

Now we can use these basic concepts
of work and energy to understand why
cycling requires less energy than running.
A good bicycle is an exceptionally effi-
cient means of using the body’s internal
energy to produce motion. Suppose you
ride a high-tech bicycle with thin, well-in-
flated tires and very little friction in its
moving parts. Riding such a bike over flat,
level pavement at, say, 10 km/h, requires
little effort. Once moving, both the ki-
netic energy and the gravitational poten-

Fig. 7-A An exhausted runner and a
still fresh cyclist have traveled the same
distance at the same speed.

Continued.

Closer LookA



tial energy of the bicycle and your body
stay constant with just a little pedaling re-
quired. At such a low bike speed, there is
not much air resistance. Consequently,
only a little work needs to be done by
your legs as they push against the pedals
and your body loses little internal energy
in producing this small amount of work.
The work that is done by your legs is
needed to compensate for the small neg-
ative work done by friction and air resis-
tance. If you did not pedal at all, your bike
would gradually slow down.

If you were to ride a bike uphill or at a
much higher speed, or if your tires were
not well inflated, or if there were much
friction in your wheel bearings, you
would have to do considerably more
work.

In contrast to riding a bike, when you
run on a flat, level surface, your kinetic
energy and gravitational potential energy
can never be exactly constant. Watch a
runner and you will see that the runner’s
head moves up and down somewhat, an
indication of some change in elevation of
the runner’s center of mass. This means
that the runner’s gravitational potential
energy is not constant. Some of that en-
ergy is lost each time the runner’s body
moves downward, and this energy must
then be supplied as the body moves up-
ward again. More efficient runners, espe-
cially champion marathoners, bob up and
down less than average runners do and
thereby use less energy.

A runner’s center-of-mass kinetic en-
ergy also necessarily varies somewhat,
again in contrast to that of a cyclist. Al-
though this effect is more difficult to see,
a runner’s center of mass continually al-
ternates between speeding up and slow-
ing down with each stride. Although
the variation in center-of-mass speed is
slight, it does require a significant amount 

of work for the legs to increase the cen-
ter-of-mass kinetic energy from the mini-
mum value to the maximum value during
each stride.

To obtain a more detailed understand-
ing of just how runners use energy, ex-
perimental studies have been performed
using force platforms and high-speed
photography (see Chapter 4, Example
11). Such studies* indicate that the body’s
internal work is used in four ways:
1 To raise the body’s center of mass a

few centimeters each step, increasing
gravitational potential energy.
Fig. 7-B indicates how running tends
to produce an up-and-down motion.
Gravitational potential energy is lost as
the center of mass falls to its original
level, with the energy being converted
first into kinetic energy and then lost
as the foot strikes the ground. So even  

*See Alexander R McN: Biomechanics, 1975,
Halstead Press, New York, pp 28-30.

though the ground you run on may be
level, you are in a sense always going
uphill. Of course, if you do actually run
up a hill, your leg muscles must do
more work to provide extra gravita-
tional potential energy. Running down-
hill can reduce the work your legs do.

2 To increase slightly the body’s center-
of-mass speed and hence its center-
of-mass kinetic energy at the begin-
ning of each stride. This is necessary
because as each stride is completed a
backward force must be exerted on
the forward foot by the road to stop
the foot’s forward motion and begin its
backward motion. The entire body
then experiences a backward external
force (Fig. 7-C). This force slightly de-
celerates the runner’s center of mass,
which then must be accelerated again
to its maximum speed. This is accom-
plished by the leg muscles doing work,
pushing the foot backward against the
road, so that the road now pushes the
runner forward.

Fig. 7-C The road exerts a backward
force on a runner’s foot as it hits the sur-
face. This force tends to reduce the run-
ner’s speed.

Fig. 7-B The runner’s center of mass
moves from point P to point P9, increasing
elevation by a distance h.

Closer LookA



Energy of a System of Particles
When a gymnast performs the “iron cross” (Fig. 7-28), his body is stationary and
therefore no work is done by any force he exerts on his surroundings. And yet the
gymnast’s muscles tire after a few seconds of performing this difficult feat. Energy
is used because the muscle fibers are under tension and are continually contracting
and relaxing. Work is done by these internal tension forces, and energy must be sup-
plied by the gymnast’s body to do this work. In an example such as this, energy does
not belong to a single particle. Instead, we have to regard the total energy as being
distributed over the system of particles in the gymnast’s body. We need to extend our
treatment of energy to systems of particles so that we will be able to introduce some
of the most interesting applications of energy concepts, such as work done by inter-
nal forces within a human body or a machine.

Eq. 7-33 (S Wnc 5 DE) applies to each particle in a system of n particles; that is, a
particle’s increase in mechanical energy equals the net work done by internal or ex-
ternal forces acting on that particle. If we write out this equation for each particle of
the system and add the equations, we obtain a useful equation, applicable to the sys-
tem as a whole.

S Wnc,1 5 DE1 (for particle 1)

S Wnc,2 5 DE2 (for particle 2)
. .
. .
. .

S Wnc,1 1 S Wnc,2 1 . . . 5 DE1 1 DE2 1 . . .

5 D(E1 1 E2 1 . . .) (7-41)

*7-7

3 To provide the kinetic energy of the
legs as they swing back and forth. This
energy, called rotational kinetic en-
ergy, is lost as the foot strikes the
ground and must be provided by the
leg muscles that do work as they push
the legs back and forth relative to the
body’s center of mass. (Rotational ki-
netic energy will be discussed in Chap-
ter 9, Section 9-4.)

4 To compensate for the negative work
done by air resistance. If you run at a
slow or moderate pace with no wind,
air resistance is not a very significant
factor—certainly less significant than
the other three. However, if you run
directly into a strong wind, air resis-

tance can become very significant,
sometimes requiring more work than
any of the other forms of energy used
in running.
In Section 9-6, we shall use a rough

mechanical model of running to estimate
the power that must be provided by a
runner’s legs for each of the four types
of energy use we have just described.
There, for a running speed of 3.0 m/s (9
minutes per mile), we obtain the follow-
ing estimates:
1 Center-of-mass potential energy, 94 W
2 Center-of-mass kinetic energy, 77 W
3 Rotational kinetic energy of legs,

58 W
4 Air resistance, 11 W

This gives a total power estimate of 240
W, or about one third horsepower! Al-
though this is just a crude estimate,* it
does give some idea of the considerable
energy we use when we run.

*Studies of the power output of muscular
forces have been made, using situations where
this power is easily measured directly. For ex-
ample, in the case of cycling, the power output
of the muscular forces is very nearly the power
delivered to the bike’s pedals, and this power
can be measured. The maximum power output
that the human body can produce depends very
much on the strength and conditioning of the
individual. Exceptional athletes can maintain a
power output of }

1
3

} hp for about 1 hour, or 1 hp
for about 1 minute, or 2 hp for about 6 seconds.

Fig. 7-28 A gymnast performs the
iron cross.
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CHAPTER 7 Energy188

Compute the mechanical power provided by internal forces
within the body of a person of mass 80.0 kg who runs up a
flight of stairs, rising a vertical distance of 3.00 m in 3.00 s.

SOLUTION  The only nonconservative forces doing work
on the body are internal forces within the body. We find
the average power output of these forces, P

–
int, by applying

Eq. 7-44.

P
–

int 5 S P
–

nc 5

If the body’s kinetic energy is approximately constant during
the climb, the only change in energy is the increase in gravita-
tional potential energy.

DE 5 DUG 5 mgyf 2 mgyi 5 mg(yf 2 yi)

Inserting this into the expression for power, we obtain

P
–

int 5 5

5 784 W  (or 1.05 hp)

(80.0 kg)(9.80 m/s2)(3.00 m)
}}}

3.00 s
mg(yf 2 yi)
}}

Dt
DE
}
Dt

We define the system’s energy E to be the sum of the single particle energies.

E 5 E1 1 E2 1 . . . (7-42)

If we now let S Wnc denote the sum of the work done on all particles of the system,
we can express Eq. 7-41 as

S Wnc 5 DE (7-43)

This equation looks identical to Eq. 7-33 for a single particle. Here, however, we in-
terpret E as the energy of a system and SWnc as the total work done on the system.

Sometimes internal forces do work, for example, forces within the muscles of the
gymnast in Fig. 7-28, or forces on the pistons in the cylinders of an automobile en-
gine. However, internal work is not present in a rigid body, a body in which there is
no relative motion of the body’s particles. This follows from the fact that the internal
forces occur in oppositely directed, action-reaction pairs. Interacting particles within
a rigid body experience the same displacement. Therefore the work done on one par-
ticle by an internal force F is the negative of the work done on the other interacting
particle by the reaction force ]F. The net work is then zero.

The nonconservative forces acting on a body deliver average power, S Pwnc, which
is the net work per unit time performed by these forces.

S Pwnc 5 S 5

Using Eq. 7-43 (S Wnc 5 DE), this may be expressed

S Pwnc 5 (7-44)

Wnc
}
Dt

S Wnc
}

Dt

DE
}
Dt

EXAMPLE 14 The Power Required to Run Up a Flight of Stairs
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Fig. 7-29 The cyclist is ascending Latigo Canyon in Malibu, Cali-
fornia. Beginning at sea level the road rises 2850 ft over a distance
of 7 miles.

EXAMPLE 15 Energy and Power Required for Hill Climbing on a Bicycle

A cyclist rides up Latigo Canyon, rising from sea level to a fi-
nal elevation of 869 m (2850 ft) (Fig. 7-29). The combined
weight of the cyclist and the bicycle is 825 N (185 lb).
(a) Find the increase in mechanical energy in the system of the
cyclist and the bicycle.
(b) What is the minimum work done by internal forces in the
cyclist’s body?
(c) How much power is supplied by the cyclist if he reaches
the top in 1 hour?

SOLUTION  (a) Kinetic energy is approximately constant,
and so the increase in mechanical energy equals the increase
in the cyclist’s gravitational potential energy, which is quite
large.

DE 5 DUG 5 mg(Dy) 5 (825 N)(869 m)

5 7.17 3 105 J

(b) There are several nonconservative forces acting on and
within the system. The external forces of air resistance and
road friction both do negative work on the system. In addition
there is some internal friction in the bicycle wheel bearings
and crank; these forces also do negative work. It is the positive
work done by tension forces in the cyclist’s muscles that is re-
sponsible for the increase in mechanical energy. In the most
ideal case of negligible friction and air resistance, the work
Wint done by the cyclist’s muscles equals the net nonconserva-
tive work. According to Eq. 7-43, this equals the system’s in-
crease in mechanical energy:

Wint 5 S Wnc 5 DE 5 7.17 3 105 J

More realistically, the internal work of the muscles must be
somewhat greater, since part of it is used to balance the nega-
tive work done by friction and air resistance.

The source of energy here is stored “internal energy” in the
cyclist’s body. We shall study internal energy in Chapter 14
on thermodynamics. Here we simply note that the human
body is at best only about 25% efficient; that is, the work per-
formed by the muscles equals about 25% of the internal en-
ergy used by the body (the other 75% is converted to heat).
Thus the loss in internal energy equals 4(7.17 3 105 J) 5

2.87 3 106 J, or 685 Calories (about the number of Calories
provided by a half-pint of Häagen-Dazs ice cream).
(c) The power is found when we divide the work by the time
interval.

P 5 5 5 199 W  (or 0.27 hp)
Wint}
Dt

7.17 3 105 J
}}

3600 s



The kinetic energy of a particle of mass m moving at speed v
is given by

K 5 mv2

The work done on a particle is given by

W 5 S (Fs Ds)

where the sum is over short intervals of length Ds, and Fs is
the component of the force along the interval. If the path is
linear and the force constant,

W 5 Fx Dx

Work and kinetic energy are related through the work-
energy theorem, which states that a particle’s increase in ki-
netic energy equals the net work done by the force acting on
the particle.

DK 5 Wnet

A force is called conservative if the work done by it can
be expressed as a decrease in some kind of potential energy.
The gravitational force and the spring force are both conser-
vative. Their respective potential energies are:

UG 5 ]

or

UG 5 mgy (if the distance from the
center of the earth is es-

sentially constant)

and US 5 kx2

Friction is a nonconservative force.

The total mechanical energy is defined to be the sum of
the kinetic energy and the various potential energies.

E 5 K 1 U 5 K 1 UG 1 US 1 . . .

If only conservative forces do work on a particle, its total
mechanical energy is conserved.

Ef 5 Ei (conservative forces only)

More generally, a particle’s mechanical energy may increase
or decrease, if positive or negative work is done by noncon-
servative forces.

SWnc 5 DE 5 Ef 2 Ei

This equation may also be applied to a system of particles if
the energy E is interpreted as the sum of single particle ener-
gies.

E 5 E1 1 E2 1 . . . 1 En

Power is the rate at which work is done.

Average power Pw 5

Instantaneous power P 5 limit
Dt → 0

The instantaneous power provided by a force F to a body
moving at speed v may be expressed

P 5 Fsv

The net power provided by nonconservative forces may be
expressed

S Pwnc 5
DE
}
Dt

W
}
Dt

W
}
Dt

1
}
2

GmM
}

r

1
}
2

1 Can the kinetic energy of a body ever be negative?
2 You drive your car along a curving road at constant

speed.
(a) Does your kinetic energy change?
(b) Is the work done by the force accelerating your car

positive, negative, or zero?
3 (a) Does the kinetic energy of a body depend on the

reference frame of the observer?
(b) Does the work done on a body depend on the ref-

erence frame of the observer?

4 A child on a skateboard grabs the rear bumper of a car
and is towed up a hill. The speed of the car is 20 mph
at the bottom and 10 mph at the top of the hill. Is the
work done on the child and skateboard by the follow-
ing forces positive, negative, or zero: (a) force of the
bumper on the child; (b) force of gravity on the child;
(c) resultant force on the child?

5 Fig. 7-15 shows a skier skiing down a hill. Could the
skier have chosen another path between the same two
points such that (a) the work done by gravity was
greater; (b) the work done by friction was greater?

Questions

HAPTER SUMMARYC 7
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Problems

Work and Kinetic Energy

1 Find the kinetic energy of (a) a bullet of mass 5.00 g
traveling at a speed of 300 m/s; (b) a woman of mass
50.0 kg running at a speed of 9.00 m/s; (c) a car of
mass 1.00 3 103 kg moving at a speed of 20.0 m/s.

2 The moon has a mass of 7.36 3 1022 kg and moves
about the earth in a circular orbit of radius 3.80 3

108 m with a period of 27.3 days.
(a) Find the moon’s kinetic energy as observed on

earth.
(b) Would the moon’s kinetic energy be the same

from the sun’s reference frame?

7-1

Problems (listed by section)

6 Two objects are simultaneously released from the
same height. One falls straight down, and the other
slides without friction down a long inclined plane.
(a) Do both have the same acceleration?
(b) Do both have the same final speed?
(c) Do both take the same time to descend?

7 A satellite goes from a low circular earth orbit to a
higher circular earth orbit.
(a) Does the gravitational force on the satellite in-

crease, decrease, or remain the same?
(b) Does the satellite’s gravitational potential energy

increase, decrease, or remain the same?
8 Can the work done by a force always be expressed as

a decrease in potential energy?
9 A boy rides a bicycle along level ground at approxi-

mately constant velocity, without pedaling. Is me-
chanical energy approximately conserved?

10 A boy rides a bicycle along level ground at constant
velocity, pedaling at a steady rate.
(a) Is mechanical energy conserved?
(b) Is there any work done by individual nonconserv-

ative forces?
(c) Is there any net work done by nonconservative

forces?
11 Suppose you run up a hill at constant speed.

(a) Is there net work done on your body?
(b) Is there a net nonconservative work done on your

body?
(c) Is your mechanical energy conserved?

12 (a) As you drive a car from the top of a mountain to its
base, is the car’s mechanical energy conserved?
Explain.

(b) Would you expect to get better gas mileage than
on a flat road?

13 A fountain of water shoots high in the air. The water
then falls back into a surrounding pool.
(a) Describe the transformation of energy the water

undergoes, beginning with the water shooting up-
ward at the base of the fountain.

(b) Is the mechanical energy of the water conserved as
the water completes its cycle?

(c) What provides the nonconservative force that does
positive work on the water?

14 A worker raises a load of bricks from the ground to a
platform. The worker can lift one brick at a time or all
the bricks together.
(a) In which case is the work greater, or is it the same

in either case? Neglect the work done in raising the
body each time he bends over.

(b) Take into account the work done in raising the
body. In which case is the work greater?

(c) In which case is the required power greater?
15 Given that an automobile can develop only a limited

amount of power, does this put a limit on the maxi-
mum slope of a mountain road that a given automobile
can drive up at a given speed?

16 Weight lifters find that the greatest gains in strength
(and the greatest muscle soreness) occur as a result of
doing “negatives,” that is, doing negative work on
very large weights. Is negative work done by raising
or lowering a weight?

Answers to Odd-Numbered Questions

1 no; 3 (a) yes; (b) yes; 5 (a) no; (b) yes; 7 (a) de-
crease; (b) increase; 9 yes; 11 (a) no; (b) yes; (c) no;
13 (a) kinetic energy to gravitational potential energy
to kinetic energy to heat; (b) yes; (c) the water pump;
15 yes
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CHAPTER 7 Energy

3 A man of mass 80.0 kg walks down the aisle of an air-
plane at a speed of 1.00 m/s in the forward direction
while the plane moves at a speed of 300 m/s relative to
the earth. Find the man’s kinetic energy relative to (a)
the plane; (b) the earth.

4 Suppose you carry a bag of groceries weighing 125 N
from your car to your kitchen, a distance of 50 m,
without raising or lowering the bag.
(a) What is the work done by the force you exert on

the bag?
(b) Would the work be different if your kitchen were

in an upstairs apartment?
5 Tarzan, who weighs 875 N, swings from a vine

through the jungle. How much work is done by the
tension in the vine as he drops through a vertical dis-
tance of 4.00 m?

6 One boat tows another boat by means of a tow line,
which is under a constant tension of 500 N. The boats
move at a constant speed of 5.00 m/s. How much
work is done by the tension in 1.00 min?

7 You lift a box weighing 200 N from the floor to a shelf
1.50 m above.
(a) What is the minimum work done by the force you

exert on the box?
(b) When would the work be greater than this

minimum?
8 A weight lifter raises a 900 N weight a vertical dis-

tance of 2.00 m. Compute the work done by the force
exerted on the weight by the weight lifter.

9 You are loading a refrigerator weighing 2250 N onto
a truck, using a wheeled cart. The refrigerator is raised
1.00 m to the truck bed when it is rolled up a ramp.
Calculate the minimum work that must be done by the
force you apply and the magnitude of the force if the
ramp is at an angle with the horizontal of (a) 45.08;
(b) 10.08.

10 A man drags a table 4.00 m across the floor, exerting
a constant force of 50.0 N, directed 30.08 above the
horizontal.
(a) Find the work done by the applied force.
(b) How much work is done by friction? Assume the

table’s velocity is constant.
11 The driver of a 1500 kg car, initially traveling at

10.0 m/s, applies the brakes, bringing the car to rest in
a distance of 20.0 m.
(a) Find the net work done on the car.
(b) Find the magnitude and direction of the force that

does this work. (Assume this force is constant.)

12 A child on a sled is initially at rest on an icy horizon-
tal surface. The sled is pushed until it reaches a final
velocity of 6.00 m/s in a distance of 15.0 m. The coef-
ficient of friction between the ice and runners of the
sled is 0.200, and the weight of the child and the sled
is 350 N. Find the work done by the force pushing the
sled.

13 Air bags are used in cars to decelerate the occupants
slowly when a car is suddenly decelerated in a crash.
(a) Compute the work done by the decelerating force

acting on a 55.0 kg driver if the car is brought to
rest from an initial speed of 20.0 m/s.

(b) Find the minimum thickness of the air bag if the
average decelerating force is not to exceed 8900 N
(2000 lb), and the center of the car moves forward
0.800 m during impact.

14 A particle moves along the x -axis from x 5 0 to x 5

4 m while acted upon by a force whose x component
is given in Fig. 7-30. Estimate the work done by the
force.

Gravitational Potential Energy;
Constant Gravitational Force

15 Suppose you are driving in the High Sierras from
Mammoth Mountain to the Owens Valley 1500 m be-
low. If the mechanical energy of your car were con-
served, what would be your approximate final speed?

16 A small weight is suspended from a string of negli-
gible weight and given an initial horizontal velocity
of 2.00 m/s, with the string initially vertical. Find
the maximum angle u that the string makes with the
vertical if the string is 1.00 m long.

7-2

★

★

Fig. 7-30
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Problems

17 You ski straight down a 45.08 slope, starting from rest
and traveling a distance of 10.0 m along the slope.
Find your final velocity, assuming negligible air resis-
tance and friction.

18 A skier of mass 70.0 kg rides a ski lift to the top,
which is 500 m higher than the base of the lift.
(a) Find the increase in the skier’s gravitational poten-

tial energy.
(b) Find the minimum work done by the force exerted

on the skier by the lift.
(c) When the skier skis down the run, what would her

final velocity be if no force other than gravity did
work? What other forces do work?

19 A cyclist coasts up a 10.08 slope, traveling 20.0 m
along the road to the top of the hill. If the cyclist’s ini-
tial speed is 9.00 m/s, what is the final speed? Ignore
friction and air resistance.

20 On a ski jump a skier accelerates down a ramp that
curves upward at the end, so that the skier is launched
through the air like a projectile. The objective is to at-
tain the maximum distance down the hill. Prove that
the vertical drop h must equal at least half the hori-
zontal range R (Fig. 7-31).

21 Find the minimum work required to carry a truckload
of furniture weighing 2.00 3 104 N to a third-story
apartment, 20.0 m above the truck.

22 A ladder 2.50 m long, weighing 225 N, initially lies
flat on the ground. The ladder is raised to a vertical po-
sition. Compute the work done by the force lifting the
ladder. The ladder’s center of gravity is at its geomet-
ric center.

23 What is the average force exerted on the diver in Fig.
7-7a by the diving board, if she weighs 700 N and ac-
celerates from rest to a speed of 4.00 m/s while mov-
ing 0.300 m upward.

Gravitational Potential Energy;
Variable Gravitational Force

24 Compute the escape velocity on Jupiter, which has a
radius of 7.14 3 107 m and mass 318 times the earth’s
mass.

25 Find the minimum initial speed of a projectile in order
for it to reach a height of 2000 km above the surface of
the earth.

26 Suppose a rocket is at an elevation of 100 km and has
an initial velocity of 1.00 3 104 m/s, directed verti-
cally upward. If the rocket engines do not burn and no
force other than the earth’s gravity acts on the rocket,
how far does it go?

27 If a space probe has a speed of 2.00 3 104 m/s as it
leaves the earth’s atmosphere, what is its speed when
it is far from the earth?

28 The Little Prince is a fictional character who lives on
a very small planet (Fig. 7-32). Suppose that the
planet has a mass of 2.00 3 1013 kg and a radius of
1.00 3 103 m.
(a) How long would it take for an object to fall from

rest a vertical distance of 1.00 m?
(b) Suppose the Little Prince throws a ball vertically

upward, giving it an initial velocity of 1.00 m/s.
What would be the maximum height reached by
the ball? (HINT: Don’t assume g to be constant.)

(c) At what speed could a ball be thrown horizontally
so that it would travel in a circular orbit just above
the surface of the planet?

7-3

★

Fig. 7-31

★

Fig. 7-32 The Little Prince.
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29 A satellite of mass m is in a circular earth orbit of
radius r.
(a) Find an expression for the satellite’s mechanical

energy.
(b) Calculate the satellite’s energy and speed if m 5

1.00 3 104 kg and r 5 1.00 3 107 m.
30 Halley’s comet is in an elongated elliptical orbit

around the sun and has a period of about 76 years.
Last seen in 1986, it will again be close to the sun and
the earth in 2061. The comet’s maximum distance
from the sun is 5.3 3 1012 m, at which point (called
“aphelion”) its speed is 910 m/s.
(a) Find its speed when it is at its point of closest ap-

proach (perihelion), 8.8 3 1010 m from the sun,
which has a mass of 2.0 3 1030 kg.

(b) The radius of the earth’s orbit is 1.5 3 1011 m, a
distance defined as an astronomical unit. Estimate
the time required for Halley’s comet to travel a
distance equal to one astronomical unit, when it is
near perihelion.

Spring Potential Energy;
Conservation of Energy

31 A spring with a force constant of 1500 N/m is com-
pressed 10.0 cm. Find the work done by the force
compressing the spring.

32 When an archer pulls an arrow back in his bow, he is
storing potential energy in the stretched bow.
(a) Compute the potential energy stored in the bow, if

the arrow of mass 5.00 3 10]2 kg leaves the bow
with a speed of 40.0 m/s. Assume that mechanical
energy is conserved.

(b) What average force must the archer exert in
stretching the bow if he pulls the string back a dis-
tance of 30.0 cm?

33 A toy consists of a plastic head attached to a spring of
negligible mass. The spring is compressed a distance
of 2.00 cm against the floor, and then the toy is re-
leased. The toy has a mass of 100 g and rises to a
height of 60.0 cm above the floor. What is the spring
constant?

34 An elevator car of mass 800 kg falls from rest 3.00 m,
hits a buffer spring, and then travels an additional
0.400 m, as it compresses the spring by a maximum of
0.400 m. What is the force constant of the spring?

35 A 4.00 kg block starts from rest and slides down a
frictionless incline, dropping a vertical distance of
3.00 m, before compressing a spring of force constant
2.40 3 104 N/m. Find the maximum compression of
the spring.

36 A mass of 0.250 kg is attached to the end of a massless
spring of unknown spring constant. The mass is
dropped from rest at point A, with the spring initially
unstretched. As the mass falls, the spring stretches. At
point B the mass is as shown in Fig. 7-33.
(a) Find the force constant of the spring.
(b) Find the magnitude of the acceleration of the mass

at point B.

37 A pole-vaulter begins a jump with a running start. He
then plants one end of the pole and rotates his body
about the other end, thereby rising upward (Fig. 7-34).
At the beginning of the vault the pole bends, storing
potential energy somewhat in the manner of a com-
pressed spring. Near the top of the arc, the pole un-
bends, releasing its potential energy and pushing the
pole-vaulter higher. With what speed must the pole-
vaulter approach the bar if he is to raise his center of
mass 5.00 m? Assume that mechanical energy is con-
served. The world record in the pole vault is 6.0 m,
and the fastest speed achieved by a runner is about
10 m/s.
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Problems

Conservative and Nonconservative
Forces

38 A 1.00 kg block starts from rest at the top of a 20.0 m
long 30.08 incline. Its kinetic energy at the bottom of
the incline is 98.0 J. How much work is done by
friction?

39 A 1.00 kg block slides down a 20.0 m long 30.08 in-
cline at constant velocity. How much work is done by
friction?

40 A ball of mass 0.300 kg is thrown upward, rising
10.0 m above the point at which it was released. Com-
pute the average force exerted on the ball by the hand,
if the hand moves through a distance of 20.0 cm as the
ball is accelerated.

41 A person jumps from a burning building onto a fire-
man’s net 15.0 m below. If the average force exerted
by the net on the person is not to exceed 20 times the
body weight, by how much must the center of the net
drop as the person comes to rest?

42 A skier skis down a steep slope, maintaining a con-
stant speed by making turns back and forth across the
slope as indicated in Fig. 7-35. The side edge of the
skis cuts into the snow so that there is no chance of
sliding directly down the slope; that is, there is a large
static frictional force perpendicular to the length of the
skis. There is a much smaller kinetic friction along the
length of the skis. If the coefficient of kinetic friction
is 0.10, what must be the total length of the skier’s
tracks as he drops a vertical distance of 100 m down a
408 slope at constant speed?

43 A cyclist competing in the Tour de France coasts
down a hill, dropping through a vertical distance of
30.0 m. The cyclist has an initial speed of 8.00 m/s
and a final speed of 20.0 m/s. What fraction of the cy-
clist’s initial mechanical energy is lost? What noncon-
servative forces cause this?

Power

44 How much work could be performed by a 746 W
(1 hp) motor in 1 hour?

45 How much mechanical power must be supplied by a
car to pull a boat on a trailer at a speed of 20.0 m/s if
the force exerted by the car on the trailer is 2000 N?

46 A weight lifter raises a 1000 N weight a vertical dis-
tance of 2.00 m in a time interval of 2.00 s. Compute
the power provided by the weight lifter’s force.

47 Find the weight that could be lifted vertically at the
constant rate of 10.0 ft/s, using the mechanical power
provided by a 3.00 hp motor.

48 Ten boxes, each 20.0 cm high and weighing 200 N,
initially are all side by side on the floor. The boxes are
lifted and placed in a vertical stack 2.00 m high in a
time interval of 5.00 s. Compute the power necessary
to stack the boxes.

49 Compute the minimum power necessary to operate a
ski lift that carries skiers along a 45.08 slope. The lift
carries 100 skiers of average weight 700 N at any one
time, at a constant speed of 5.00 m/s.

50 (a) Compute the electrical energy used by a household
whose monthly electrical bill is $30, computed at
the rate of $0.06 per kWh.

(b) How long could this energy be used to burn ten
100 W light bulbs?

(c) If this energy were used to raise a car of mass
2000 kg, to what height would the car be raised?

51 The total annual use of energy in the United States is
approximately 1019 J. Solar energy provides 1400 W
per square meter of area in direct sunlight if this area
is perpendicular to the sun’s rays. Suppose that solar
energy could be used with 100% efficiency. Find the
total area of solar energy collectors needed to provide
the nation’s energy needs if on an average day these
collectors could be used for 8.0 hours.
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CHAPTER 7 Energy

Energy of a System of Particles

52 A hiker weighing 575 N carries a 175 N pack up Mt.
Whitney (elevation, 4420 m), increasing her elevation
by 3000 m.
(a) Find the minimum internal work done by the

hiker’s muscles.
(b) If she is capable of producing up to 746 W (1.0 hp)

for an extended time, what is the minimum time
for her to ascend?

53 Find the minimum internal work that must be done by
the muscles of a shot-putter to impart an initial veloc-
ity to a 16.0 lb shot sufficient to give it a horizontal
range of 60.0 ft.

54 A pole-vaulter of mass 80.0 kg is initially at rest be-
fore beginning his approach to the bar. He is instanta-
neously at rest at the high point of his jump, having
raised his center of mass 5.00 m. Find the minimum
internal work done by the vaulter’s muscles.

55 Two blocks of mass 100 g each are initially at rest on
a frictionless horizontal surface. The blocks are in
contact with opposite ends of a spring of force con-
stant 500 N/m, which is compressed 20.0 cm. Find the
final speed of each block, after the spring is allowed to
expand.

56 A car’s engine develops mechanical power at the rate
of 30.0 hp while moving along a level road at a speed
of 60.0 mi/h. Half the mechanical energy developed
by the engine is delivered to the wheels, with the re-
mainder being wasted because of internal friction.
Find the mechanical power developed by the engine in
order for the 2500 lb car to travel at the same speed up
a 6.00% grade (sin u 5 6.00 3 10]2).

57 A small canal diverts water from the Perlbach, a river
in Bavaria. Water flowing through the canal drops
through a small distance and turns a waterwheel,
which powers an electric generator, providing elec-
tricity for the house shown in Fig. 7-36. Calculate
the maximum electric power that can be generated
if water moves through the canal at the rate of
1.00 3 103 kg/s and drops through a vertical distance
of 2.00 m. (Only about 1 kW is used by the household,
the remainder being sold to the local power company.)

Additional Problems
58 A pendulum swings through an arc of 90.08 (45.08 on

either side of the vertical). The mass of the bob is
3.00 kg and the length of the suspending cord is
2.00 m. Find (a) the tension in the cord at the end
points of the swing; (b) the velocity of the bob as it
passes its lowest point and the tension in the cord at
this point.

59 Tarzan grabs a vine, which is initially horizontal, and
attempts to swing to the ground (Fig. 7-37). Tarzan
weighs 890 N, and the breaking strength of the vine he
knows to be 1780 N. As Tarzan is swinging, he is sur-
prised to find that the vine breaks at a certain angle u.
Find u.
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Fig. 7-36 This house in the Bavarian forest near Munich
derives its electric power from a small generator, powered
by water from a canal.
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60 Find the minimum initial height h of the roller coaster
in Fig. 7-38 if the roller coaster is to complete the
20.0 m diameter loop. Neglect friction.

61 The roller coaster in Fig. 7-39 has an initial speed of
7.00 m/s at point A. Find the apparent weight of a
450 N (100 lb) passenger at points B and C. Neglect
friction.

62 In his novel From the Earth to the Moon, published in
1865, Jules Verne first suggested that it might be pos-
sible to travel to the moon by firing a very high veloc-
ity projectile at the moon. Find the minimum initial
velocity of such a projectile as it leaves the earth’s at-
mosphere. Take into account the moon’s gravitational
force.

63 In the novel The Moon Is a Harsh Mistress, a colony
on the moon threatens the earth with bombardment by
heavy stones. These stones are relatively easy to pro-
pel from the moon, with its low gravity, and yet reach
a very high velocity as they strike the earth.
(a) Compute the minimum initial velocity necessary

for a projectile at the surface of the moon in order
for it to reach the earth. 

(b) Find the velocity of the projectile as it enters the
earth’s atmosphere.

(c) Calculate the ratio of the projectile’s final kinetic
energy to its initial kinetic energy.

64 It is estimated that artificial earth satellites have pro-
duced approximately 40,000 pieces of debris larger
than a pea. Suppose that one of the larger pieces of de-
bris of mass 100 kg is in a circular orbit at two earth
radii from the center of the earth and that the mass
strikes a satellite in the same orbit, traveling in the op-
posite direction. Calculate the kinetic energy of the
mass relative to the satellite. For comparison, the en-
ergy released by 1 million tons of TNT (or a 1 mega-
ton nuclear bomb) equals 4.18 3 109 J.

65 A person weighing 170 lb produces mechanical power
of 0.10 hp in walking on a horizontal surface. Suppose
that the person can provide a maximum mechanical
power of 0.20 hp for 5 hours. What is the maximum
height the person could climb up a mountain in this
length of time? Assume that the extra 0.10 hp is used
to provide gravitational potential energy.

66 Two blocks are attached to opposite ends of a string
that passes over a massless, frictionless pulley (Fig.
7-40). Block A of mass 10.0 kg lies on a 60.08 incline
with a coefficient of friction of 0.500, and block B of
mass 1.00 kg is attached to a vertical spring of force
constant 200 N/m. The blocks are initially at rest with
the spring at equilibrium. Find the maximum height
that block B rises.

67 A football of mass 0.500 kg is thrown by a quarter-
back, who accelerates the ball over a path of length
40.0 cm, releasing the ball with an initial velocity at
an angle of 45.08 above the horizontal. The horizontal
range of the football is 55.0 m. Find the average force
exerted on the ball by the quarterback’s hand. Ignore
air resistance.

Problems
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*It has been proposed that a shower of new comets might rain down on the planets every 30 million years or so, as the solar system passes
through a heavily populated part of our galaxy. This would account for increased geological activity on earth about every 30 million years. It
might even account for the sudden mass extinction of dinosaurs and many other species, which occurred about 65 million years ago, about the
same time that there was deposited on the earth’s crust a thin sedimentary layer rich in iridium, which is otherwise rare on earth.

68 An athlete who weighs 800 N is able to raise his cen-
ter of mass 0.500 m in a vertical jump.
(a) Compute the internal work done by the athlete’s

leg muscles as he pushes off from the ground.
(b) Find the athlete’s speed as the feet leave the

ground.
(c) Find the time during which the feet are in contact

with the ground and the body accelerates upward,
assuming that the center of mass moves through a
distance of 0.400 m at constant acceleration.

(d) Calculate the average mechanical power pro-
duced.

69 Only a few hundred comets have been observed.
(Halley’s comet is the most spectacular of these.)
However, it is now believed that there are perhaps
1012 comets, composing what is called the Oort cloud,
with orbits much larger than the planetary orbits (Fig.
7-41). It may be perturbation of these comets’ orbits
by other bodies (a nearby star, for example) that occa-
sionally sends one of them into a new orbit much
closer to the sun, so that then, like Halley’s comet, it
becomes visible on earth. Some of these comets
would very likely strike the earth, with devastating ef-
fects.* Suppose that a comet from the Oort cloud is
slowed by a passing star, so that it falls toward the sun
(m 5 1.99 3 1030 kg) and strikes the earth. Find the
comet’s speed when it reaches earth, 1 astronomical
unit (Au), or 1.49 3 1011 m, from the sun, if initially
the comet is 50,000 Au from the sun and is moving at
a speed of only a few m/s. Ignore the earth’s gravita-
tional effect, which is relatively small.

70 (a) When the comet in the last problem collides with
the earth, an enormous cloud of dust is thrown into
the atmosphere. Estimate the mass of the dust, as-
suming that the comet’s mass is 1.0 3 1014 kg (the
approximate mass of Halley’s comet), that half the
comet’s energy is converted to gravitational poten-
tial energy of the dust cloud, and that the dust is
uniformly spread in a layer 20 km thick (where
most of the earth’s atmosphere is concentrated).

(b) Calculate the density of the dust and compare with
the density of air at the surface of the earth
(1.2 kg/m3). The dust would likely remain for
months or years, would cut off solar radiation,
shrouding the earth in darkness, and could well re-
sult in extinction of many species, including the
human species. A similar outcome has been pre-
dicted for a nuclear war; the scenario in this case is
referred to as “nuclear winter.”

71 Repeat Problem 69, this time taking into account the
earth’s gravity.

72 Use Eq. 7-20 to express the gravitational potential en-
ergy UG9 of a body of mass m at a distance r from the
center of the earth, where r is the sum of the earth’s ra-
dius R and the distance y of the mass above the earth’s
surface. Show that when y ,, R, this expression re-
duces to UG9 < mgy. (The symbol ,, means ‘much
less than’.)
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Fig. 7-41 (Diagram by Steven Simpson: Sky and Telescope
73:239, March 1987.)
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Collision of a comet with Jupiter, July 16-23, 1994, as seen in
ultraviolet light.


