
Ocean waves, generated by the
wind, sometimes travel many
kilometers before breaking as they
enter shallow water. Although the
wave and its energy move over
great distances, the water
experiences only small-amplitude,
periodic motion. 

386

Mechanical Waves;
Sound

he world around us is filled with waves—sound waves, radio waves, microwaves,

X-rays, light waves, water waves, earthquake waves, and many others. Some of

these waves require a material medium for their transmission. These are called

mechanical waves. Water waves, sound, and earthquake waves are all mechanical

waves, since each requires a medium through which to propagate. Water waves travel

through water, and earthquake waves travel through the earth. Sound travels through air

or some other medium. None of these waves can be transmitted through a vacuum.

In this chapter we shall study only mechanical waves, in particular, water waves, sound,

and waves on a string. In later chapters we shall study radio waves, microwaves, X-rays,

and visible light, all of which are examples of electromagnetic waves. Electromagnetic

waves are not mechanical waves. No physical medium is necessary to transmit these

waves; they can travel through a vacuum. For example, when we look at a starry sky, we

see light that has traveled through the vacuum of interplanetary space.

Although we consider only mechanical waves in this chapter, we shall find that many

of the wave concepts learned here are applicable to electromagnetic waves as well. For

example, all kinds of waves can transmit energy.

T
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Fig. 16-3 A quick back-and-forth hori-
zontal motion of the left end of this
spring produces a wave pulse that trav-
els along the spring to the right. As the
wave pulse passes each segment of the
spring, that segment undergoes the
same back-and-forth motion as the left
end.

Fig. 16-1 When the domino at the left end of this line is pushed over to the right, a wave
pulse passes through the line.

Fig. 16-2 A quick up-and-down mo-
tion of the left end of this string pro-
duces a wave pulse that travels horizon-
tally along the string to the right. As the
wave pulse passes each point on the
string, that point undergoes the same
up-and-down motion as the left end.
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Description of Waves
Wave Pulses; Dominoes, Strings, and Springs
The phenomenon of a wave pulse is easily demonstrated with a line of dominoes,
standing on end and closely spaced (Fig. 16-1). If the domino at the left end is pushed
over to the right, the effect is transmitted down the line. All the dominoes fall in turn.

Each domino has kinetic energy only for the brief interval during which it is
falling. A pulse of energy is transmitted from one end of the line to the other, though
each domino moves only a very short distance. This is a general characteristic of me-
chanical wave motion: energy is transported through matter without the trans-
port of the matter itself. A mechanical wave transmits energy from one place to an-
other while the matter through which it is transmitted remains in place.

A wave pulse can also be generated on a string under tension. If the left end of a
taut string is moved up and down once with a quick flip of the wrist, a wave pulse of
fixed shape moves to the right at constant velocity (Fig. 16-2). This motion of the
wave pulse is not the same as the motion of the string. As illustrated in the figure, a
point P on the string moves vertically while the wave moves horizontally and trans-
mits energy along the string. A wave such as this, in which the motion of the medium
is perpendicular to the wave motion, is called a transverse wave.

Waves for which the motion of the medium is parallel to the direction of wave
propagation are called longitudinal waves. Longitudinal waves on a spring are illus-
trated in Fig. 16-3. If the left end of the stretched, horizontal spring is pushed to the
right and then pulled back to the left, the adjacent section of the spring first com-
presses and then stretches. This motion is transmitted to the right all along the spring:
as the wave pulse passes, each section moves first to the right and then to the left.
This passage of the pulse results in first a compression and then a stretching, or “rar-
efaction,” of the spring.

16-1



Fig. 16-4 A wave produced by a rain-
drop falling on the still surface of a lake.

Fig. 16-5 Side view of the wave pro-
duced by a raindrop on the surface of a
lake.

Fig. 16-6 (a) A sound wave originating from a point spreads out spherically. (b) At a great
distance from the source of a spherical wave, small sections of the spherical surfaces are ap-
proximately planes.
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Water Waves: Two-Dimensional Waves

The preceding examples were one dimensional waves; that is, the wave energy
moved along a line. A water wave is an example of wave motion in two dimensions.
When the surface of a body of water is disturbed, a wave propagates radially outward
(in two dimensions) from the disturbance along the surface of the water. For exam-
ple, a water wave is produced by a raindrop striking the surface of a lake, as shown
in Figs. 16-4 and 16-5. As the wave moves outward from the point of disturbance, the
energy being transmitted by the wave spreads out and the height of the wave gradu-
ally diminishes. This is true for all two-dimensional waves as well as for all three-di-
mensional waves, which we consider next.

Sound Waves: Three-Dimensional Waves

A sound wave in air is an example of a three-dimensional, longitudinal wave. It con-
sists of compressions and rarefactions of air molecules spreading out in all direc-
tions. The click you hear when two billiard balls collide is a sound-wave pulse. Air
molecules are compressed between the colliding balls. This compression is followed
by a rarefaction, a volume in which the density of the air molecules is much lower
than in undisturbed air. The effect is transmitted outward to the surrounding air, and
the wave pulse propagates in all directions.

If a sound wave originates at a point and propagates outward equally in all direc-
tions, the wave disturbance takes the shape of a spherical surface centered on the
source, as indicated in Fig. 16-6a. This is called a spherical wave.

If a wave disturbance is the same everywhere over the surface of a plane, the wave
is said to be a plane wave. If a small part of a spherical wave is viewed at a large dis-
tance from the source, this part of the spherical surface is approximately a plane, and
the wave may be represented by a plane wave in this region (Fig. 16-6b). A plane
wave varies only in one direction—its direction of motion, which is perpendicular to
the plane. Since variation in a plane wave depends on only one spatial variable, it
may be described in the same way as the variation in a one-dimensional wave.

(a) (b)



Fig. 16-8 SHM of (a) the end of a stretched string or
(b) a tuning fork generates a harmonic wave.

Fig. 16-7 Periodic waves: (a) har-
monic wave; (b) square wave; (c) wave
generated by a vibrating guitar string.

(a)

(b)

(c)
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Periodic Waves; Wavelength, Frequency, and Speed

Many waves are repetitive, or periodic. Periodic motion of the wave’s source results
in a wave whose form is periodic in space. For example, you can generate a periodic
wave on a string by repeatedly flicking the string up and down. Some periodic wave
forms are shown in Fig. 16-7. A wave form may represent the observed shape of a
wave on a string, or it may represent the spatial variation of any other kind of wave
disturbance. For example, the wave form may represent the spatial variation in the
density of air molecules in a sound wave.

The wavelength of a wave, denoted by the Greek letter l (lambda), is the distance
between any two successive identical points on the wave—from one crest to the next,
say, or from one trough to the next (Fig. 16-7).

If the motion of the source is SHM, the wave form that results has a sine wave
shape (Fig. 16-7a) and is called a harmonic wave. A harmonic wave on a string is
generated when one end of the string is repeatedly moved up and down in SHM (Fig.
16-8a). A vibrating tuning fork generates a harmonic sound wave (Fig. 16-8b). Har-
monic waves are of particular importance in the study of waves, as we shall see in
Section 16-6 when we study superposition of waves.

As a periodic wave passes a given particle in the medium, that particle undergoes
periodic motion. The frequency f of a periodic wave is the frequency of the periodic
motion experienced by each particle of the medium. For example, each air molecule
in the path of a 512 Hz sound wave vibrates at a frequency of 512 Hz.

A wave imparts the motion of the source to each particle of the medium, but for
each particle this motion is delayed by the time interval required for the wave to
travel to that particle. For example, as a harmonic wave travels along a string, all par-
ticles of the string undergo SHM. In Fig. 16-8a particles P and Q undergo the same
SHM, but Q is }

1
2

} cycle behind P because a time interval of }
1
2

} period is required for the
wave to travel from P to Q.

(a) (b)



Wave speed v is the speed at which a wave propagates through the medium. It is
important to understand that wave speed is not the same as the speed of a particle
of the medium. In Fig 16-9 the colored segment of string near point P is oscillating
up and down at a certain speed, but this is not the wave speed. The rate at which the
crests labeled with arrows move to the right is the wave speed.

By relating the SHM of a particle of the string to the motion of the wave, we shall
show how wavelength is related to wave speed and frequency. Fig. 16-9 shows one
cycle of motion for a segment of string near point P. This segment undergoes periodic
motion (up and down in the y direction) with period T. During the same time T, each
crest of the wave moves a distance l to the right. The wave crest moves to the right
at the wave speed v, where

v 5

Indeed, each part of the wave form moves at this speed. Since the frequency f equals
1/T, we may express the equation above in the form

v 5 l f (16-1)

This relationship is valid for waves of any kind (water waves, sound, light, and so
forth), and although we have illustrated a harmonic wave in Fig. 16-9, the relation-
ship is valid for any wave form.

The frequency of a wave is always determined solely by the wave source. Thus,
once a wave is formed, its frequency doesn’t change, even when the wave passes
from one medium to another. In contrast, the speed of a wave is determined by the
medium through which the wave travels. For example, the speed of sound in wa-
ter (1480 m/s) is quite different from the speed of sound in air (340 m/s). Wave speed
in a given medium may depend on the frequency of the wave; that is, waves of some
frequencies may travel faster than waves of other frequencies. This phenomenon is
called dispersion.*

If both the speed and the frequency of a wave are known, we can find its wave-
length by using Eq. 16-1 (v 5 l f ) to solve for l . Thus wavelength depends on both
the source and the medium.

l
}
T
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EXAMPLE 1 Wavelength of Sound for a Musical Note

Frequencies of sound produced by a piano range from about
30 Hz for the lowest notes to about 4000 Hz for the highest
notes. Find the wavelength in air of a 262 Hz sound wave pro-
duced by striking middle C on a piano. What would the wave-
length of this sound be under water? The speed of sound is
340 m/s in air and 1480 m/s in water.

SOLUTION  We apply Eq. 16-1:

v 5 l f

or l 5

In air, l 5 5 1.30 m

In water, l 5 5 5.65 m

Notice that the frequency remains unchanged, even when
the wave leaves the air and enters water. Since wave speed in-
creases as the wave goes from air to water, the relationship

l 5 }
v

f
} shows that the wavelength must increase as v increases.

v

}
f

1480 m/s
}

262 Hz

340 m/s
}
262 Hz

Fig. 16-9 Each segment of a string
moves up and down with a period T as
a wave of wavelength l moves along the
string to the right. In time T one wave-
length has passed a fixed point P.

*Electromagnetic waves traveling through matter also exhibit dispersion. For example, red light travels
through glass faster than blue light; this is responsible for the colors one sees in looking through a prism
(see Section 23-2).



Reflection

Any abrupt change in the medium a wave travels through will result in the wave’s be-
ing reflected. An echo is a sound wave that reflects as its medium changes from air to
some solid. If you yell in a mountainous area, you can often hear your echo a few sec-
onds later. The sound wave produced by your voice has been reflected by the sur-
rounding mountains. Similarly, when a wave on a string reaches the end of the string,
the wave is reflected. Fig. 16-10 shows the reflection of wave pulses. If the end of the
string is held fixed, as in Fig. 16-10a, the wave pulse is inverted when it is reflected.
If the end is free to move, as in Fig. 16-10b, the reflected wave pulse is not inverted.

Fig. 16-11 shows a wave pulse in a changing medium, going from a lighter string
to a heavier one. In this case the pulse is partially transmitted into the second medium
and partially reflected back into the first medium. The reflected pulse is inverted
when the second medium is denser than the first one. When the first medium is the
denser one, the reflected wave is not inverted.

16-1 Description of Waves 391

EXAMPLE 2 Ultrasound Imaging

Only sounds in the frequency range from about 20 Hz to about
20,000 Hz are audible to humans. Ultrasound is the name
given to sound at frequencies above 20,000 Hz. Ultrasound
can be used to produce images inside the human body (Fig.
16-12). Ultrasound waves penetrate the body, traveling at a
speed of 1500 m/s, and are reflected from surfaces inside.

For a good ultrasonic picture having sufficient detail, the
wavelength should be no greater than about 1.0 mm. Find the
frequency of such an ultrasonic wave.

SOLUTION  Solving Eq. 16-1 (v 5 l f ) for f, we obtain

f 5 }
l

v

} 5 }
1.0

15
3

00
1
m
0]

/
3

s
m

}

5 1.5 3 106 Hz  (or 1.5 MHz)

Fig. 16-10 When a wave pulse on a string reaches the string’s end,
the wave is (a) inverted if the end is fixed; (b) not inverted if the end is
free.

Fig. 16-11 When a wave pulse goes
from one string to another of different
density, the pulse is partially transmitted
and partially reflected.

Fig. 16-12 Ultrasound image of a fetus.



Wave Speed
In this section we shall discuss the speed of propagation of waves of various types
and see which characteristics of the media determine the wave speed. Again, as
stressed in the preceding section, it is important to understand that what we are con-
sidering here is not the speed of individual particles of the medium but rather the
speed at which the wave form moves through the medium.

Speed of a Wave on a String

Consider a small-amplitude pulse transmitted along a horizontal string under a ten-
sion F. A stationary observer sees the pulse moving horizontally at a constant speed
v and the string moving vertically but not horizontally (Fig. 16-13a).

If, however, the observer moves with the pulse at speed v, the pulse will appear to
be stationary but the string will be moving horizontally as well as vertically. For the
moving observer, the string has a horizontal velocity component v to the left (Fig.
16-13b). A point on the string that is instantaneously at the top of the wave form has
only a horizontal component of velocity v. A small segment of the string centered on
this point (shaded in the figure) follows an approximately circular path at speed v.

We can obtain an expression for the wave speed by analyzing the forces acting on
this string segment of length , and mass M, shown in an expanded form in Fig.
16-14. The two components of tension F sin u produce a resultant force in the radial
direction, which, according to Newton’s second law, produces centripetal accelera-
tion v2/R:

2 (F sin u) 5 Ma 5

The angle u is small, and so sin u may be approximated by u (as in Chapter 15, Fig.
15-11). We relate u to , and R, using Fig. 16-14:

sin u < u 5

Substituting this expression for sin u into the equation above, we obtain

2F 5 M

Solving for v, we find

v 5 !w

This expression indicates that the wave speed depends only on tension and on the
mass per unit length, which we shall denote by the Greek letter m:

m 5 (16-2)

With this definition we may write v more concisely:

v 5 !w
(16-3)

This equation predicts that if we increase the tension in a string the wave speed in-
creases and if we replace the string by one having greater mass the wave speed de-
creases.

16-2

Mv
2

}
R

,/2
}
R

v
2

}
R

,/2
}
R

F,
}
M

M
}
,

F
}
m
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Fig. 16-13 (a) Viewed from the labo-
ratory reference frame, a wave pulse
moves to the right at constant speed v,
while the string moves in the vertical di-
rection as the pulse passes. (b) Viewed
from a reference frame moving to the
right at speed v with respect to the lab-
oratory, the wave pulse appears station-
ary and the string has a horizontal com-
ponent of velocity v to the left.

Fig. 16-14 An expanded view of the
segment of string near the top of the
pulse in Fig. 16-13.

(a)

(b)



Speed of Sound

Table 16-1 gives the speed of sound in various media. Notice that sound travels con-
siderably faster in solids and liquids than in gases. Unlike gas molecules, the mole-
cules of solids and liquids are in constant contact with their neighbors. Consequently,
these molecules respond more quickly to a wave pulse than do gas molecules, which
interact only through occasional collisions.

In Chapter 12 we found that the rms speed of molecules in an ideal gas is given by
Eq. 12-16:

vrms 5 !w

where k is Boltzmann’s constant, T is the absolute temperature, and m is the mass of
a molecule. It is possible to use the laws of mechanics to prove that the speed of
sound in an ideal gas is proportional to vrms. The exact result of this derivation is

v 5 !w
vrms

where g equals 1.40 for diatomic gases like nitrogen and oxygen. Thus

v 5 !w (16-4)

The fact that wave speed is proportional to rms molecular speed in an ideal gas is cer-
tainly plausible, since the wave propagates as a result of the interaction of the gas
molecules during collisions and the average time between collisions depends on the
rms speed.

3kT
}

m

g
}
3

1.40kT
}

m
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(For a diatomic ideal gas)

EXAMPLE 3 Transmitting a Wave Pulse on a String

Two people hold opposite ends of a 10.0 m long rope having a
mass of 1.00 kg. The person at one end gives the rope a small
upward jerk. How long is it before the person at the other end
feels the jerk, if the rope is held with a tension of (a) 40.0 N;
(b) 10.0 N?

SOLUTION  (a) We first apply Eq. 16-3 to find the wave
speed on the rope, which has a mass density of (1.00 kg)/
(10.0 m), or 0.100 kg /m:

v 5 !w
5 !ww

5 20.0 m/s

At this speed the wave will travel the 10.0 m length of the
rope in a time interval

Dt 5 5

5 0.500 s

(b) When the tension is reduced to 10.0 N, the speed decreases
and the time interval increases:

v 5 !w
5 !ww

5 10.0 m/s

The pulse is now slower and so it takes longer to transmit:

Dt 5 5 �5 1.00 s

F
}
m

10.0 N
}}
0.100 kg/m

40.0 N
}}
0.100 kg/m

F
}
m

10.0 m
}
10.0 m/s

x
}
v

10.0 m
}
20.0 m/s

x
}
v

Speed of sound

Medium Speed (m/s)

Air (20° C) 344
Air (0° C) 332
Hydrogen (08 C) 1270
Water (208 C) 1480
Average body tissue 1570
(378 C)

Aluminum 5100
Copper 3560
Iron 5130

Table 16-1



Speed of Deep-Water Waves

Although water waves are easy to observe, they are relatively complex waves that are
difficult to analyze in general. So we shall discuss only the special case of long-wave-
length waves in deep water.

A wave is considered a deep-water wave if the depth of the water is much greater
than the wavelength of the wave. In a deep-water wave each particle of water at the
surface moves along a path in the vertical plane. If the wave is harmonic, a water par-
ticle’s path is circular and a particle’s speed is constant, as indicated in Fig. 16-15. As
the wave propagates in a horizontal direction, the water undergoes both horizontal
and vertical motion. Thus a water wave is neither transverse nor longitudinal. A body
floating in the water will experience the same circular motion as the water. Suppose
you are swimming in the ocean a good distance from shore. As a wave passes, you
are first lifted, then pushed forward, then let down, and finally pushed back to your
starting place, as indicated in the sequence of drawings in Fig. 16-15.

This circular motion is not limited to water at the surface; it extends to the water
below, but the amplitude of the motion diminishes rapidly with depth. At a distance
of 0.73l below the surface, the amplitude is only 1% of the amplitude at the surface.

The speed of deep-water waves having wavelengths greater than about 10 cm is
given by the following approximate expression:

v 5 !w
(16-5)

One can derive this result by applying Bernoulli’s equation (Problem 74). Notice that
Eq. 16-5 implies that dispersion occurs for water waves; waves of different frequency
(and therefore different wavelength) travel at different speeds.

gl
}
2p

(deep-water waves; l $ 10 cm)
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Suppose you strike a tuning fork that has a resonant frequency
of 512 Hz. Find the speed and wavelength of the wave that
propagates through the air if the air temperature is (a) 0° C;
(b) 20.0° C.

SOLUTION  (a) Air consists of approximately 80% nitro-
gen and 20% oxygen, and so the molecular mass of air is ap-
proximately 0.8(28) 1 0.2(32) 5 28.8. This means that an av-
erage air molecule has a mass of 28.8 atomic mass units (u),
where 1 u 5 1.66 3 10 ]27 kg. Since both oxygen and nitrogen
are diatomic molecules, we can apply Eq. 16-4:

v 5 !w 5 !
5 332 m/s

The wavelength is found when Eq. 16-1 (v 5 l f ) is applied:

l 5 �5 5 0.648 m 5 64.8 cm

(b) At 20.0° C, or 293 K, we find

v 5 !1.4

m

0 kT
5 !���

5 344 m/s

Sound travels somewhat faster through warmer air. Since f re-
mains the same regardless of temperature, the wavelength in-
creases:

l 5 5 5 0.672 m 5 67.2 cm
344 m/s
}
512 Hz

v

}
f

(1.40)(1.38 3 10]23 J/K)(293 K)
}}}}

(28.8)(1.66 3 10]27 kg)

332 m/s
}
512 Hz

v

}
f

(1.40)(1.38 3 10]23 J/K)(273 K)
}}}}

(28.8)(1.66 3 10]27 kg)
1.40kT
}

m

EXAMPLE 5 Deep-Water Wave Speed

Find the speed of deep-water waves of wavelength (a) 2.00 m;
(b) 5.00 m.

SOLUTION  Applying Eq. 16-5, we find

(a) v 5 !w
5 ! 5 1.77 m/s

(b) v 5 ! 5 2.79 m/s
(9.80 m/s2)(5.00 m)
}}}

2p

(9.80 m/s2)(2.00 m)
}}}

2p

gl
}
2p

Fig. 16-15 As a deep-water wave
passes, the water at the surface moves
along a circular path whose radius is the
amplitude of the wave.

EXAMPLE 4 The Wavelength of Sound Produced by a 512 Hz Tuning Fork



Moving Sources and Observers:
The Doppler Effect

Suppose you are standing beside a highway while cars pass by at high speed. As each
car approaches, it produces a sound with a high frequency, or pitch. Just as the car
passes, the pitch you hear drops significantly. Although the sound produced by the
engine is unchanged, the frequency of the sound you hear is higher while the car is
approaching than while it is moving away. This phenomenon is known as the
Doppler effect. It occurs when either a source of sound or an observer of sound is in
motion. Although the source produces a sound wave of a certain frequency fS, the ob-
served frequency fO may be quite different.

Stationary Source, Moving Observer

Consider first the situation in which the source is stationary and the observer is mov-
ing. (All motion is measured relative to the medium of the sound wave.) The wave-
length of the sound is determined by the frequency fS of the source and the speed v of
the sound through the medium:

l 5

If the observer O is moving toward the source S at speed vO as shown in Fig. 16-16,
the observer passes more wavefronts per second than were emitted per second; that
is, the observer hears a frequency that is greater than fS. Since the wavefronts move
relative to the observer at speed v 1 vO, the observed frequency fO will be this rela-
tive speed divided by l:

fO 5

Substituting in this equation the value of l from the preceding equation, we find

fO 5

or fO 5 fS 11 1 2
Next suppose that an observer is moving away from the
source, as is observer O9 in Fig. 16-16. Now fewer
wavefronts per second pass the observer; that is, a fre-
quency lower than fS is observed. The wavefronts move
relative to the observer at a speed
v 2 vO. So the observed frequency is

fO 5 5

or fO 5 fS 11 2 2
Summarizing the results for the observed frequency when the observer is moving ei-
ther toward or away from the source, we have

fO 5 fS 11 6 2 (1, observer moving toward source; (16-6)
2, observer moving away from source)

16-3

v

}
fS

v 1 vO
}

l

v 1 vO
}

v/fS

vO
}
v

v 2 vO
}

l

v 2 vO
}

v/fS

vO
}
v

vO
}
v
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Fig. 16-16 Observers O and O9 hear
sound produced by a stationary source.
Observer O is moving toward the
source at speed vO, and observer O9 is
moving away from the source at speed
v9O.



Moving Source, Stationary Observer

Next we consider a moving source and a stationary observer. Fig. 16-17 shows two
wavefronts produced by a source that is moving to the right at constant velocity vS.
At t 5 0, the source was at point S, at which instant it emitted the larger wavefront
shown in the figure—a spherical surface centered at S. At t 5 T 5 1/fS, the source
emitted from point S9 the smaller wavefront shown in the figure—a spherical surface
centered at S9, a distance vST to the right of S. Adjacent wavefronts in front of the
moving source are squeezed together, whereas adjacent wavefronts behind the mov-
ing source are spread out. The observed wavelengths are respectively l 2 vST and
l 1 vST. Since the observer is at rest with respect to the medium, the relative speed
of the wavefronts is just the speed v of waves through the medium. The observed fre-
quency in front of the source is

fO 5

where l may be expressed as v/fS:

fO 5

or

fO 5

Behind the moving source, the observed frequency is v/(l 1 vST), and

fO 5

Summarizing these results for a moving source, we have

fO 5 (16-7)

If both the observer and the source are moving through the medium, factors from
both Eq. 16-6 and Eq. 16-7 are simultaneously present. We find in general

fO 5 fS 1 2 (16-8)

v

}
l 2 vST

v

}}
v/fS 2 vS /fS

fS
}
1 2 vS /v

fS
}
1 1 vS /v

fS
}
1 7 vS /v

1 6 vO /v
}
1 7 vS /v

(upper signs if toward;
lower signs if away)

(2, source moving toward observer;
1, source moving away from observer)
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Fig. 16-17 A source of sound moves at speed vS away from
one observer and toward another observer. Wavefronts move
at the speed of sound v.



The Electromagnetic Doppler Effect

The Doppler effect is not limited to sound waves. All waves experience a similar
effect. In particular, all electromagnetic waves, including visible light, undergo a
Doppler shift when there is relative motion of observer and source. However, be-
cause of the unique nature of electromagnetic waves, the analysis of their Doppler
shift is different from the analysis we used for sound waves.

Here we simply state without proof the relationship between the source frequency
fS and the observed frequency fO. For electromagnetic waves, it is only the relative ve-
locity of observer and source that counts. Denoting the relative speed by v and the
speed of light by c, the following equation provides a good approximation to the ob-
served frequency, so long as v is much less than c, where c 5 3.00 3 108 m/s:

fO < fS 11 6 2 (16-9)

The Doppler effect is important in astronomy, where it is used to determine
the speed of a star emitting light that is observed at a frequency fO shifted somewhat
from the frequency fS that would be emitted by the same kind of source if it were
stationary.

The electromagnetic Doppler effect is also utilized in police radar units. Electro-
magnetic radiation of radar frequency is reflected from a moving car back to the radar
unit. The speed of the car is determined when the Doppler shift of the radar fre-
quency is observed.

v

}
c

A train travels parallel to a highway at a speed of 35.0 m/s. A
car traveling on the highway at 30.0 m/s in the opposite direc-
tion is approaching the train. The driver of the car hears the
train’s whistle at a frequency of 650 Hz. (Fig. 16-18).
(a) What is the frequency of the whistle as heard on the train?
(b) After the train passes, what is the frequency of the whistle
as heard by the car’s driver? Use 344 m/s as the speed of
sound.

SOLUTION  (a) We apply Eq. 16-8 with the two upper
signs, since the observer and the source are moving toward
each other:

fO 5 fS1 2
650 Hz 5 fS1 2
650 Hz 5 1.21 fS

or fS 5 5 537 Hz

(b) After the source passes, observer and source are moving
away from each other. So we use the lower signs in Eq. 16-8
to find the frequency heard by the driver:

fO 5 fS1 2
5 (537 Hz)1 2
5 445 Hz

As the train passes, the driver hears a dramatic drop in fre-
quency, from 650 Hz to 445 Hz.

1 2 vO /v
}
1 1 vS/v

1 1 vO /v
}
1 2 vS /v

1 2 (30.0 m/s)/(344 m/s)
}}}
1 1 (35.0 m/s)/(344 m/s)650 Hz

}
1.21

1 1 (30.0 m/s)/(344 m/s)
}}}
1 2 (35.0 m/s)/(344 m/s)
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Fig. 16-18

(1, toward; 2, away)
(v << c)

EXAMPLE 6 Listening to the Whistle of an Approaching Train
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Fig. 16-19 A source of sound travels
at a speed vS (a) less than the speed of
sound; (b) slightly greater than the
speed of sound; (c) much greater than
the speed of sound. Dashed lines show
regions where energy is most concen-
trated.

Fig. 16-20 When a source moves at a
speed vS greater than the speed of
sound v, sound energy is concentrated
along the surface of a cone. The surface
makes an angle u with the direction of
motion.

Fig. 16-21 A conical surface of con-
centrated sound energy sweeps over
the ground as a supersonic plane passes
overhead.

Supersonic Speeds

So far we have considered only sources of sound moving at speeds less than the
speed of sound, or at “subsonic” speeds. If the source moves at a “supersonic” speed,
that is, faster than the speed of sound, a region of intense sound is created. This is
known as a sonic boom. The effect is caused by the concentration of sound energy in
a relatively small region of space. Wherever wavefronts are very close together, there
is a concentration of energy. As these closely spaced wavefronts sweep past an ob-
server, the observed intensity of the sound is quite large.

Fig. 16-19a shows a source moving to the right at a subsonic speed. Notice that
there is some concentration of energy in front of the source. Fig. 16-19b shows a
source moving slightly faster than the speed of sound, and Fig. 16-19c shows a
source moving much faster than the speed of sound. In all three figures, the region of
concentrated sound energy is inside the dashed lines. In Fig. 16-19c the concentrated
region is along the surface of a cone.

Fig. 16-20 shows that the surface of this cone makes an angle u with the direction
of motion, where

sin u 5 (16-10)

The inverse of this ratio, vS/v, is called the “mach number.” For example, if an object
moves at mach 2, its speed is twice the speed of sound, or about 680 m/s.

As the surface of the cone passes an observer, a loud sound of short duration is
heard—a sonic boom. Notice that this sonic boom occurs not just as the “sound bar-
rier” is broken, as many people erroneously believe. It is produced for as long as the
source moves at supersonic speed, and anyone in the path of the conical edge of the
wavefront will hear it. Fig. 16-21 shows a supersonic plane at equal time intervals.
The surface of the cone sweeps along the ground at the same speed as the plane.

v

}
vS

(a) vs < v
Subsonic

(b) vs >, v
Slightly

supersonic

(c) vs >> v
Supersonic



The crack of a whip is the shock wave, or sonic boom, produced by the tip of the
whip moving at supersonic speed. The sound of a bullet is a similar effect. When a
boat moves through water at a speed greater than the speed of wave propagation, the
pattern of waves in its wake is a two-dimensional version of the wave pattern in a
sonic boom (Fig. 16-22). The front edge of the wake is the region with the greatest
concentration of energy.

Power and Intensity; the Decibel Scale
Waves sometimes transmit large amounts of energy in short intervals of time. For ex-
ample, when Hurricane Iniki hit Hawaii in 1992, the waves spawned by the hurricane
carried enough energy to cause great destruction.

In this section we shall study the rate at which energy is transmitted in various
waves, that is, the power carried by a wave (Fig. 16-23).

Harmonic Waves on a String

Consider first the power transmitted by a harmonic wave on a string. The power P is
defined as the energy per unit time transmitted past a given particle on the string. In
Fig. 16-24 a particle at point O is about to experience the passage of one cycle of a
harmonic wave. At the end of one cycle, the wave form has passed O. So during a
time interval equal to the period of the motion, all the energy contained in a segment
of the string of length l has been transmitted past O. The power transmitted equals
the energy E contained in one wavelength divided by the period T, the time during
which the energy passes:

P 5

The energy E in one wavelength can be calculated from the fact that the motion of
each particle of the string is SHM, like the motion of a mass m on a spring of force

constant k. Using Eq. 15-15 1T 5 2p!w2, we can solve for k in terms of m and
the period T:

k 5

The mass m is the mass of one wavelength of the string. Using Eq. 16-2

1m 5 5 2, we find
m 5 ml

We insert the two preceding equations into the expression for the total energy of a
mass on a spring oscillating with amplitude A (Eq. 15-16: E 5 }

1
2

} k A2) to obtain

E 5

To find the power, we divide E by T:

P 5 5

Substituting T 5 and l 5 , we obtain

P 5 2p 2mvf 2A2 (16-11)

16-4

E
}
T

m
}
k

4p 2m
}

T 2

m
}
l

m
}
L

2p 2mlA2

}}
T 2

2p 2mlA2

}}
T 3

E
}
T

v

}
f

1
}
f
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Fig. 16-22 The passing of the leading
edge of a boat’s wake is the water wave
equivalent of a sonic boom and is cre-
ated when a boat moves through water
at a speed greater than that of the
waves it produces.

Fig. 16-24 The kinetic and potential
energy contained in one wavelength of
string at t 5 0 is transmitted through
the particle O in the time interval T.

Fig. 16-23 Water waves sometimes
carry large amounts of energy.
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Harmonic Sound Waves

In contrast to a wave on a string, which transmits energy along a line, a sound wave
spreads energy over a volume of space. We shall find an expression for the rate at
which sound energy is transported from one region of space to another, passing
through a cross-sectional area perpendicular to the direction of motion.

Motion of a sound wave through a surface area is illustrated in Fig. 16-25 for both
plane and spherical waves. If we apply to a harmonic sound wave the same reason-
ing used to obtain an expression for the power carried by a harmonic wave on a
string, we obtain the same result, Eq. 16-11:

P 5 2p 2mvf 2A2

where m, the mass per unit length of the medium, is the product of the density r of
the medium and the cross-sectional area !, as shown in Fig. 16-26 for a plane wave:

m 5 r!

Substituting this value for m into the preceding equation, we obtain

P 5 2p 2r!vf 2A2 (16-12)

Often the concentration of power in a sound wave is of more importance than the
total power; that is, we may wish to know how much power is transmitted per unit
area of the wave. We define the power divided by the cross-sectional area perpendic-
ular to the direction of wave motion to be the intensity I of the sound wave:

I 5 (16-13)
P
}
!

EXAMPLE 7 Power Transmitted by a Wave on a String

A 10 Hz harmonic wave of amplitude 5.0 cm travels at 30 m/s
along a string having a mass density of 0.020 kg/m. Find the
power transmitted.

SOLUTION  Applying Eq. 16-11, we find

P 5 2p 2mv f 2A2

5 2p 2(0.020 kg/m)(30 m/s)(10 Hz)2 (0.050 m)2

5 3.0 W

Fig. 16-25 (a) A plane wave passes through an open window that is ori-
ented perpendicular to the direction of motion. Sound energy passes into
the room through the window of area !. (b) A spherical wave passes
through a cross-sectional area !, which is part of a spherical surface.

Fig. 16-26 Finding the mass per unit
length of the medium for a sound wave

(a) (b)
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Combining Eqs. 16-12 and 16-13, we obtain an expression for the intensity of a har-
monic sound wave of amplitude A and frequency f, moving at speed v through a fluid
of density r:

I 5 2p 2rvf 2A2 (16-14)

The Decibel Scale

The loudness of a sound is related to its intensity. Normally the human ear is ca-
pable of hearing sounds of even very low intensity over a wide range of frequencies.
The greatest sensitivity of the ear is at frequencies of a few thousand hertz. The most
sensitive individuals can hear sounds having intensities as low as about 10]12 W/m2 at
a frequency of about 4000 Hz. We shall take this intensity as our reference level—the
lowest sound intensity perceptible—and denote it by I0:

I0 5 1.00 3 10]12 W/m2 (16-15)

The sounds we commonly hear are somewhere in the range I0 to 1012 I0. When
sound intensity reaches about 1 W/m2, or 1012 I0, the sound becomes painful. This
level of intensity is typical of the sound near the loudspeakers at a rock concert.

Two sounds that differ significantly in loudness will have intensities whose ratio
will be some power of 10. For example, the rustling of leaves produces sound nearby
of intensity roughly 10 I0. A whisper, which is perceived as just a little louder than the
leaves, might have an intensity of about 102 I0. It is therefore useful to define a loga-
rithmic scale for measuring sounds. The intensity level, denoted by the Greek letter
b (beta), is defined as

b 5 10 log 1 2 (16-16)

Intensity level is a measure of the intensity of sound relative to the reference in-
tensity I0. The number b is expressed as decibels, abbreviated dB. The lowest audi-
ble sound has an intensity I0 and an intensity level

b 5 10 log 1 2 5 10 log 1 5 0

As mentioned above, the threshold of pain occurs at an intensity of 1 W/m2, which
corresponds to an intensity level

b 5 10 log 1 2 5 10 log 1 2
5 10 log 1012 5 (10)(12)

5 120 dB

Audibility curves in Fig. 16-27 show the minimum audible intensity levels for indi-
viduals with very sensitive, average, and severely handicapped hearing. Notice that
1% of the population cannot hear sounds below about 70 dB.

I
}
I0

I0
}
I0

1 W/m2

}}
10]12 W/m2

I
}
I0



A person 2.00 m away from you and talking in a normal voice
produces 60.0 dB sound at your ear. (a) Assuming that the
sound propagates equally in all directions, how much power is
delivered by the person talking? (b) What is the intensity level
at a distance of 6.00 m?

SOLUTION  (a) Solving for I in Eq. 16-16:

b 510 log 1 2,
we find I 5 I0 10b/10

5 (1.00 3 10]12 W/m2)(1060.0/10)

5 1.00 3 10]6 W/m2

If we assume that the sound propagates equally in all direc-
tions, the intensity of sound is the same everywhere on a
spherical surface of radius r 5 2.00 m. The total power is
spread over this surface and is equal to the product of the in-
tensity and the surface area ! 5 4pr 2:

P 5 I! 5 I 4pr 2

5 (1.00 3 10]6 W/m2)(4p)(2.00 m)2 5 5.03 3 10]5 W

(b) At r 5 6.00 m, the distance has tripled, and since ! ~ r 2,
the surface area is 9 times as great as before. Thus the inten-
sity is reduced by a factor of 9:

I9 5 }
9
I
} 5}

1.00 3 1
9
0]6 W/m2

}

5 1.11 3 10]7 W/m2

And the new intensity level b9 is found from the definition:

b9 5 10 log 1}
I

I

0

}2
5 10 log 1}1

1
.
.
0
1
0
1

3

3

1
1
0
0

]

]

1

7

2

W
W

/
/
m
m

2

2
}2

5 50.5 dB

I
}
I0

Fig. 16-27 Audibility curves.

EXAMPLE 8 Decibels Decrease as Distance from a Source of Sound Increases

402 CHAPTER 16 Mechanical Waves; Sound



(a) Find the amplitude of vibration of air molecules at 20.0° C
at a frequency of 1000 Hz for sounds of intensity level 0 dB
and 160 dB. (b) Repeat the calculation for a frequency of
100 Hz.

SOLUTION  (a) Solving for A in Eq. 16-14 (I 5 2p 2rvf 2A2),
we find

A 5 !w

A 0 dB sound corresponds to an intensity I0 5 1.00 3

10]12 W/m2. We find from Table 10-1 that the density of air at
20.0° C is 1.20 kg/m3 and from Table 16-1 that the speed of
sound at this temperature is 344 m/s. Inserting these values
into the equation above, we find

A 5 !
5 1.11 3 10]11 m

This is an extremely small displacement, about the di-
ameter of the smallest atom, and yet the human ear
is capable of hearing such sounds.

A 160 dB sound is 1016 times as intense as a 0 dB sound.
Since A ~ Ï�Iw, this means that the new amplitude A9 is
Ï�1w0w16w times A:

A9 5 Ï�1w0w16w A 5 (108)(1.11 3 10]11 m)

5 1.11 3 10]3 m

(b) Notice that the amplitude is proportional to 1/f. Thus,
when the frequency is reduced to 100 Hz, or one tenth of its
former value, the amplitude is 10 times as great. At 0 dB,
we have

A 5 (10.0)(1.11 3 10]11 m)

5 1.11 3 10210 m

And at 160 dB, we find

A 5 (10.0)(1.11 3 10]3 m)

5 1.11 3 10]2 m

5 1.11 cm

So for very low-frequency, high-intensity sounds, the dis-
placement of air molecules is quite large. This effect can be
dramatically demonstrated. A candle flame held near a loud-
speaker will flicker whenever the loudspeaker emits very loud,
low-frequency sounds (Fig. 16-28).

I
}
2p 2rvf 2

1
}
10

1.00 3 10]12 W/m2

}}}}}
2p 2 (1.20 kg/m3)(344 m/s)(1.00 3 103 Hz)2

Fig. 16-28

EXAMPLE 9 Small Amplitude and Large Amplitude Sound Waves
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Time Dependence of the Displacement of a
Particle of the Medium

Next we shall obtain an expression for the time dependence of a wave’s displacement
at a given point. We shall consider only harmonic one-dimensional waves and
harmonic plane waves, so that spatial variations occur only in one direction, which
we take to be the x-axis. Suppose the wave source is located at the origin (x 5 0) and
oscillates in SHM. If we assume zero displacement when t 5 0, the displacement y
at the origin is given by Eq. 15-1:

y 5 A sin 12p 2
At any point along the wave, the motion of any particle of the medium is of the
same type, that is, SHM of period T and amplitude A. However, the particle motion
at any point is delayed by the time it takes for the wave to travel to that point. If

the wave travels in the positive x direction at speed v, the time delay Dt 5 . So the

particle motion at point x at time t is the same as the motion at the origin at time

t 2 , as given by the equation

y 5 A sin 12p 2 5 A sin 32p 1 2 24
or, since vT 5 5 l, we may express this result

y 5 A sin 32p 1 2 24 (16-17)

The following example illustrates how this expression represents wave motion along
the positive x-axis. For motion along the negative x-axis, we replace v by ]v in the
expression for the time delay (t 2 x/v → t 2 x/]v 5 t 1 x/v), which leads to the
expression

y 5 A sin 32p 1 1 24 (16-18)

16-5
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Superposition of Waves; Beats;
Standing Waves

Superposition Principle
When two (or more) waves move through a medium, the net effect on the
medium is a wave whose displacement at any point is found by adding the two
(or more) separate wave displacements. This principle, called the superposition
principle, is illustrated in Fig. 16-30 by two pulses traveling in opposite directions
along a spring. When they cross, what is seen is a displacement of the medium that
equals the sum of the displacements of the two pulses.

The superposition principle applies to sound waves. For example, suppose that 10
people are in a room. If only one person is talking, the sound wave will have—at
some time and at a given point in the room—a certain displacement y1. If that person
stops talking and a second person begins talking, there will be a displacement y2 at
that same point; a third person speaking alone would produce a displacement y3 at the
point, and so forth. When all 10 speak at once, the displacement y is the sum of the
individual displacements: y 5 y1 1 y2 1 . . . 1 y10. (Despite the presence of all these
waves producing an additive net effect, it is a remarkable fact that the human ear is
often able to pick out individual voices in such a situation—at a party, for example.)

16-6

EXAMPLE 10 Snapshots of a Waveform

A wave source at the origin oscillates in SHM at a frequency
of 5.0 Hz and with an amplitude A. A plane wave travels in the
1x direction at a speed of 10 m/s. Find an expression for the
displacement y at any point x at t 5 0, t 5 0.025 s, and
t 5 0.050 s. Graph y versus x for each of these times. (These
three graphs correspond to three “snapshots” of the waveform
at equal time intervals.)

SOLUTION  First we must calculate T and l and then
apply Eq. 16-17:

T 5 5 5 0.20 s

l 5 5 5 2.0 m

y 5 A sin 32p 1 2 24
where t is in s and x is in m.

At t 5 0: y 5 A sin (]px)

At t 5 0.025 s:   y 5 A sin 1}
p

4
} 2 px2

At t 5 0.050 s:   y 5 A sin 1}
p

2
} 2 px2

The graphs of y as a function of x are given in Fig. 16-29.
These graphs show a waveform moving to the right at a speed
of 10 m/s.

x
}
2

t
}
0.20

10 m/s
}
5.0 Hz

v

}
f

1
}
5.0 Hz

1
}
f
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Fig. 16-29

Fig. 16-30 Superposition of two wave
pulses.



Constructive and Destructive Interference

Suppose that two harmonic waves of the same frequency both travel in the positive x
direction through some medium. The waves may differ in amplitude and in initial
phase angle. The two displacements are

y1 5 A1 sin 32p 1 2 24 (16-19)

y2 5 A2 sin 32p 1 2 2 1 f4 (16-20)

There are two important special cases: f 5 0 and f 5 p.
When f 5 0, the two waves are said to be “in phase.” We find the resulting wave

displacement either graphically, as indicated in Fig. 16-31, or algebraically, by
adding the two preceding expressions, with f 5 0:

y 5 y1 1 y2

5 A1 sin 32p 1 2 24 1 A2 sin 32p 1 2 24
5 (A1 1 A2) sin 32p 1 2 24

The total displacement y has the same dependence on x as the two individual waves
have. The total amplitude is the sum of the two amplitudes A1 and A2. This effect is
called constructive interference. When f 5 p, that is, when the two waves are 1808
out of phase, they tend to cancel each other. The effect, called destructive interfer-
ence, is seen graphically in Fig. 16-32, or we can find it by adding Eqs. 16-19 and
16-20 after setting f 5 p in Eq. 16-20:

y 5 y1 1 y2 5 A1 sin 32p 1 2 24 1 A2 sin 32p 1 2 2 1 p4
But since sin (u 1 p) 5 ]sin u, we may express this as

y 5 A1 sin 32p 1 2 24 2 A2 sin 32p 1 2 24
or

y 5 (A1 2 A2) sin 32p 1 2 24
Here the amplitude is the difference in the two amplitudes A1 and A2. If A1 and A2 are
equal, the destructive interference of these waves results in an amplitude of zero. In
this case, the two waves cancel. The presence of these two waves results in no wave
at all!

Difference in Path Length

Interference effects often arise when a phase difference results from different dis-
tances to the sources of the waves. Consider a point P located a distance x1 from
source 1 and a distance x2 from source 2 (Fig. 16-33). We assume that each wave has
the same amplitude A, the same frequency f, and the same initial phase angle f0 5 0.
Sources that either are in phase or have a constant phase difference are said to be co-
herent. Since the waves move through the same medium at the same
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Fig. 16-31 Constructive interference.

Fig. 16-32 Destructive interference.

Fig. 16-33 Sound waves from two
stereo speakers interfere destructively at
P because sound from speaker 2 travels
1⁄2 wavelength farther than sound from
speaker 1.
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Two stereo speakers are connected to an oscillator that causes
the speakers to produce identical harmonic sound waves of
wavelength 20.0 cm and frequency 1720 Hz. The two sources
are coherent; that is, they oscillate in phase. Let P be a point
20.0 m from the first speaker, as shown in Fig. 16-33. How far
from speaker 1 must speaker 2 be placed for there to be de-
structive interference at P?

SOLUTION  For destructive interference to occur, the min-
imum spacing between the speakers must be such that there is
a difference in the path lengths x1 and x2 equal to half a wave-
length, as indicated in the figure:

x2 2 x1 5

x2 5 x1 1 5 20.0 m 1 5 20.1 m

Applying the Pythagorean theorem in Fig. 16-33, we find

d 5 Ï�x2w2w2w xw1
2w 5 Ï�(2w0w.1w mw)2w 2w (w2w0w.0w mw)2w 5 2.00 m

If the speakers are placed 2.00 m apart, there is no sound at P.
A listener at P hears nothing. If the listener moves 1.00 m lat-
erally from P so that she is equidistant from the two speakers,
sound is heard. In this case the two waves interfere construc-
tively, producing sound with an amplitude equal to twice the
amplitude produced by one speaker alone. And since intensity
is proportional to the square of the amplitude, the intensity of
the sound is four times as great as the intensity produced by
one speaker. A pattern of alternating constructive and destruc-
tive interference is produced in the entire region of space
around the speakers. This two-source interference pattern has
an analog in optics, which we shall study in Chapter 26.0.200 m

}
2

l
}
2

l
}
2

speed and with the same frequency, it follows that they also have the same

wavelength l 5 . The respective displacements at point P are

y1 5 A sin 32p 1 2 24
y2 5 A sin 32p 1 2 24

The difference in the phase angles is

Df 5 2p 2 2p

or, letting Dx 5 x2 2 x1,

Df 5 2p (16-21)

If there is no difference in the path length (Dx 5 0), then Df 5 0 and we have con-
structive interference. Constructive interference can also occur if Dx equals any inte-
ger multiple of l, for then the phase difference is a multiple of 2p, and this is equiv-
alent to no phase difference because it leaves the sine unchanged [sin (u 1 2pn) 5
sin u]. So constructive interference occurs when the path-length difference is an in-
teger multiple of l:

Dx 5 0, l, 2l, 3l, . . .
(constructive
interference)

(16-22)

Destructive interference occurs whenever Df 5 p, or 3p, or 5p, . . . . From Eq. 16-
21, we see that such phase differences result when Dx takes on the following values:

Dx 5 , , , . . . (16-23)

v

}
f

x1
}
l

t
}
T

x2
}
l

t
}
T

x1
}
l

x2
}
l

Dx
}
l

(destructive
interference)

5l
}
2

3l
}
2

l
}
2

EXAMPLE 11 Stereo Speakers Producing Sounds that Cancel Each Other Out



Beats

When two waves have slightly different frequencies, interference at any point in
space can alternate between constructive and destructive. Suppose, for example, you
are tuning a guitar by comparing the frequencies of the sounds produced by two of
its strings. When the frequencies are close but not equal, you hear beats—a sound
that varies periodically in intensity—a throbbing or pulsing variation from loud to
weak to loud. Fig. 16-34 shows the displacement of two harmonic waves of slightly
different frequencies and periods (T1 and T2) as a function of time. The bottom of the
figure shows the sum of the two waves, which represents the wave disturbance when
both waves are simultaneously present. This resultant wave shows a periodic varia-
tion in amplitude.
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Fig. 16-34 Interference of two sound waves of slightly different frequencies produces
beats—a sound that varies in intensity.



Notice that at time t1 the waves interfere constructively but at time t2 they interfere
destructively. At time t3 they interfere constructively again. The resultant wave’s pe-
riod T 5 t3 2 t1 can be expressed in terms of the periods T1 and T2 of the interfering
waves. Constructive interference occurs when both waves are at a peak. Each wave
must undergo a number of complete cycles before constructive interference can oc-
cur again. The wave with a shorter period (T1) must undergo one more cycle than the
wave with the longer period (T2). Thus

T 5 nT 2

and T 5 (n 1 1)T1

Equating these expressions and solving for n, we find

n 5

and, since T 5 nT2,

T 5

This result is better expressed in terms of the beat frequency fB, the inverse of the beat
period T. Taking the inverse of the equation above, we find

fB 5 5 5 2

or fB 5 f1 2 f2 (16-24)

For example, if two guitar strings have frequencies of 440 Hz and 445 Hz, when both
strings are plucked together, you hear beats at a beat frequency of 5 Hz; that is, the
amplitude and intensity of the sound vary from loud to soft to loud with a period of
}
1
5

} second.

T1
}
T2 2 T1

T1T2
}
T2 2 T1

1
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1
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Standing Waves on a String

Suppose a harmonic wave is generated by an oscillator at the left end of a stretched
string, with the right end held fixed. Fig. 16-35 shows the string at equal time inter-
vals. The wave travels to the right, reaches the right end, and is reflected back. As
soon as the reflected wave begins to propagate from the right end, it interferes with
the incident wave. As indicated in Fig. 16-35, the superposition of the incident wave
(dotted line) and the reflected wave (dashed line) produces, near the right end, a wave
that is different from the original traveling wave (shaded part of figure).
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Fig. 16-35 A wave traveling to the
right is reflected, and a standing wave
begins to be formed at the right end of
the string , indicated by shading. The
string’s displacement in this shaded re-
gion is a superposition of the original
wave traveling to the right, dotted line,
and a reflected wave traveling to the
left, dashed line.

Fig. 16-36 The standing wave now
extends over a larger region, indicated
by the shading.



As the reflected wave travels farther to the left, the region of wave superposition
grows (Fig. 16-36). At some points in the superposition region, the displacement is
at times greater than the amplitude of the incident wave; at other points, the dis-
placement is always zero. The points of zero displacement are called nodes, and the
points of maximum displacement are called antinodes. The location of the nodes
and antinodes is fixed, and the wave is therefore called a standing wave. The dis-
tance between adjacent nodes is }

1

2
} wavelength, as indicated in Fig. 16-36:

x 5 (16-25)

This is also the distance between adjacent antinodes, which are midway between the
nodes.

The fact that standing waves result from the superposition of waves traveling in
opposite directions can be shown algebraically. This is accomplished when we add

the expressions y1 5 A sin 32p 1 2 24 and y2 5 A sin 32p 1 1 24, repre-

senting the displacements of the incident and reflected waves, respectively. See Prob-
lem 64.

Eventually the standing wave reaches the left end of the string (in the time it takes
for the reflected wave to travel from the right end). When this happens, the wave is
again reflected—this time to the right. If this second reflected wave happens to be in
phase with the original wave, the standing wave pattern is reinforced—its amplitude
increases (Fig. 16-37a). If the second reflected wave is not in phase with the original
wave, the standing-wave pattern is destroyed. The ends of the string are fixed.* So,
to have a standing wave, the ends of the string must be at nodes of the standing wave.
Since there is a node at every half wavelength, the string’s length , must be equal to
an integral number n of half wavelengths:

, 5

This relationship between , and l may be stated as a condition on the values of the
wavelength of standing waves that can be produced on a string of length ,. Solving
the equation above for l, we find

l 5 (for n 5 1, 2, 3, . . .) (16-26)

that is, l 5 2,, ,, , . . .

In order for a standing wave to be produced on a string of length ,, the oscil-
lator must have a frequency fn , found by inserting Eq. 16-26 into the equation

f 5 :

fn 5 n (for n 5 1, 2, 3, . . .) (16-27)

*The end of the string to which the oscillator is attached is not exactly fixed but oscillates with an ampli-
tude that is small compared with the oscillation amplitude at an antinode. So the oscillation end of the
string is close to being a node of the standing wave.
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Fig. 16-37 A standing-wave pattern is
formed when the length of the string is
an integral number of half wavelengths;
otherwise no standing wave is formed.



The oscillator is the source of energy. In an ideal system the amplitude would in-
crease without limit as the waves are reflected at each end of the string. In practice,
the amplitude does increase to the extent that the amplitude of oscillation at the an-
tinodes is much greater than the amplitude of the oscillator. Hence the oscillator is
close to a node of the system, and the oscillator end of the string can be considered a
fixed end. If the oscillator is stopped, ideally the standing wave would continue in-
definitely. In actuality, the wave quickly dies out. The energy delivered by the oscil-
lator is necessary to compensate the energy loss during the reflection at the ends and
the energy loss caused by air resistance.

If the frequency of the oscillator is not one of the standing-wave frequencies, the
reflected waves will be out of phase at each reflection, and there will be destructive
interference as often as constructive interference. The resulting wave will have an ir-
regular shape and a small amplitude.

Resonant Frequencies; Harmonics

In Chapter 15 we described the phenomenon of resonance and introduced the
concept of resonant frequency. When a body is forced to oscillate at one of its reso-
nant frequencies, its amplitude of oscillation is large. The resonant frequencies of
a vibrating string of length , are the standing-wave frequencies given by Eq. 16-27

1fn 5 n }
2

v

,
}, where n 5 1, 2, 3, . . .2. The lowest resonant frequency, called either the

“fundamental frequency” or the “first harmonic,” corresponds to setting n 5 1 in
this equation:

f1 5 (16-28)

The frequency corresponding to n 5 2 in Eq. 16-27 has twice the value of the first
harmonic and is called the second harmonic:

f2 5 2 f1 (second harmonic)

The third harmonic (n 5 3) equals three times the fundamental f1:

f3 5 3 f1 (third harmonic)

The nth harmonic equals n times the fundamental frequency:

fn 5 n f1 (16-29)

Fig. 16-38 shows the first three harmonics of a stretched string.

v

}
2,
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Fig. 16-38 Harmonics of a vibrating
string.

(fundamental frequency,
or first harmonic)

(nth harmonic)



Harmonic Analysis

Consider a wave displacement y that is a sum of two displacements y1 and y2, each
representing a different resonant frequency of a string fixed at both ends. According
to the superposition principle, y represents a possible wave on the string. For exam-
ple, it is possible for the string to vibrate simultaneously at both its first and second
harmonics, as illustrated in Fig. 16-39.

Conversely, one can consider any vibration of the string to be a superposition
of its resonant frequencies. For example, if a stretched string is plucked at its cen-
ter, the wave motion that results can be resolved into a sum of harmonics, each hav-
ing its own amplitude.

A vibrating string will cause the surrounding air to vibrate at the same frequency,
producing a sound wave. (If the string is part of a musical instrument, an air cavity,
the “sound box,” in the instrument enhances and amplifies the sound, forming stand-
ing sound waves, which we shall examine next.)
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A string of mass 2.00 g and length 1.00 m is fixed at one end
and attached at the other end to an oscillator of variable fre-
quency. The string is under a tension of 51.0 N. Find the three
lowest oscillator frequencies for which standing waves will be
formed.

SOLUTION  Waves propagate along the string at a speed
that may be found by applying Eq. 16-3:

v 5 !w

The mass density m is 2.00 g/m, or 2.00 3 10]3 kg/m. Thus

v 5 ! 5 160 m/s

Applying Eq. 16-28, we find the minimum oscillator fre-
quency f1 for the formation of a standing wave:

f1 5 5 5 80.0 Hz

This is the lowest resonant frequency of the string, that is, its
fundamental frequency, or first harmonic. The corresponding

wavelength l1 5 5 5 2.00 m. This wave-

length equals twice the length of the string (l 5 2< ), as illus-
trated in the sketch of first harmonic vibrations in Fig. 16-38.

The two next-lowest standing-wave, or resonant, frequen-
cies are the second harmonic f2 (two times the fundamental)
and the third harmonic f3 (three times the fundamental):

f2 5 2 f1 5 2(80.0 Hz) 5 160 Hz

f3 5 3 f1 5 3(80.0 Hz) 5 240 Hz

Corresponding to the second harmonic is the wavelength

l2 5 }
f

v

2

} 5 }
1
1
6
6
0
0

m
H

/
z
s

} 5 1.00 m, which equals the length of the

string. Corresponding to the third harmonic is the wavelength

l3 5 }
f

v

3

} 5 }
1
2
6
4
0
0

m
H

/
z
s

} 5 0.667 m, two thirds the length of the

string. See Fig. 16-38.
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Fig. 16-39 A string vibrates at both its
first and second harmonics.

EXAMPLE 12 The First Three Harmonics of a Vibrating String



The thickest string on a guitar has a mass per unit length of
5.60 3 10 ]3 kg/m (Fig. 16-40). The string is stretched along
the neck of the guitar and is free to vibrate between two fixed
points 0.660 m apart. When plucked, this string vibrates at a
fundamental frequency of 165 Hz and produces a sound wave
of the same frequency, which corresponds to the musical note
E below middle C. In order for the string to have this funda-
mental frequency, the tension in it must be adjusted to the
right value. Find that value.
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The same kind of analysis we have applied to a vibrating string can be applied to
any other vibrating body. The vibrations can always be resolved into a linear sum of
vibrations at certain resonant frequencies. The values of the resonant frequencies will
depend on the particular body considered and will not in general be a simple multi-
ple of the fundamental frequency. Consider, for example, the vibration of a drum.
When struck, the drum’s flexible membrane vibrates at various resonant frequencies.
The fundamental frequency f1 depends on the size of the drum—the larger the drum,
the lower the fundamental frequency is. The next few resonant frequencies are ap-
proximately 1.59 f1, 2.14 f1, 2.30 f1, 2.65 f1. Because these are not integral multiples of
f1, they are not harmonics. This fact is responsible for the nonmelodious nature of the
sound produced by a drum, in contrast to that produced by string or wind instru-
ments. These latter instruments have resonant frequencies that are integral multiples
of their fundamental frequencies, and so the sounds produced are pleasing to the ear,
hence the name “harmonics.”

A tuning fork is a device used to tune musical instruments. It is designed so that,
when struck, it vibrates at essentially only one frequency; in other words, the ampli-
tude of vibration of its fundamental frequency is much greater than the amplitude of
any of its other resonant frequencies. The size of the tuning fork determines its fre-
quency.

Standing Sound Waves

Suppose that a vibrating tuning fork is placed near the left end of a pipe that is open
at both ends. A sound wave is generated, and sound can be heard at the right end of
the pipe. The amplitude and loudness of the sound will depend on the frequency of
the tuning fork and on the length of the pipe. The air in the pipe has certain resonant
frequencies. If the tuning fork frequency is close to one of the pipe’s resonant fre-

Fig. 16-40

EXAMPLE 13 The Right Tension for a Guitar’s Thickest String

SOLUTION  We apply Eq. 16-28 1f1 5 2 for the fun-

of the wave on a string of mass per unit length m, under ten-
sion F.

f1 5 5 !w

Solving for F, we find

F 5 (2<f1)2m 5 [2(0.660 m)(165 Hz)]2 (5.60 3 10]3 kg/m)

5 266 N

F
}
m

1
}
2<

v

}
2<

v

}
2<

damental frequency and Eq. 16-3 1v 5 !w2 for the speed
F
}
m



quencies, the sound heard at the right end will have a relatively large amplitude. This
situation is analogous to the formation of a standing wave on a string. The sound
wave that originates at the left end of the pipe travels to the other end and is partially
reflected; the part of the wave energy not reflected is transmitted out through the
opening. The reflected sound wave then travels back to the left and is again partly re-
flected. This process is repeated. Unless the various reflected waves are all in phase,
there is much destructive interference and only a small-amplitude wave results. This
will be the case unless the frequency of the tuning fork is at a resonant frequency of
the pipe. If the tuning fork is at a resonant frequency, the reflected waves are all in
phase and a standing wave is formed.

Each of the pipe’s open ends is a displacement antinode* since the air is free to
move there. A standing wave will be formed only if the wavelength of the sound is
related to the length of the pipe in such a way that antinodes are located at the ends
(Fig. 16-41). Since the antinodes are a half wavelength apart, the pipe’s length , must
be an integral number n of half wavelengths:

, 5 n (for n 5 1, 2, 3, . . .)

or l 5

The resonant frequencies of the pipe are found when these values of l are inserted

into the equation f 5 :

fn 5 n (16-30)

The lowest resonant frequency, that is, the fundamental frequency, or first har-
monic, corresponds to setting n 5 1 in the preceding equation:

f1 5 (16-31)

Second-, third-, and higher-order harmonics correspond to setting n 5 2, n 5 3, and
so on in Eq. 16-30. These harmonics are multiples of the first harmonic:

f2 5 2 f1

f3 5 3 f1

.

.

.

fn 5 nf1 (16-32)

The first three harmonics of an open-ended pipe are shown in Fig. 16-41.

*The antinode does not occur exactly at the pipe’s end. But if the pipe’s diameter is small compared with
the wavelength of the sound (as it is in most musical instruments), an antinode is located close to an open
end.
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Fig. 16-41 The first three harmonics
of sound in a pipe with both ends open.

(first harmonic of an
open-ended pipe)

(nth harmonic of an
open-ended pipe,
n 5 1, 2, 3, . . .)

(for n 5 1, 2, 3, . . .)
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Fig. 16-42 The lowest three harmon-
ics of sound in a pipe with one end
closed. Notice that only odd harmonics
are present.

Fig. 16-43 A standing wave is pro-
duced by a turbulent flow of air through
one end of a wind instrument such as
an organ pipe.

(nth harmonic of a pipe
closed at one end,
n 5 1, 3, 5, . . . )

(first harmonic of a pipe
closed at one end)

A standing wave can also be formed in a pipe that is closed at one end. The closed
end is a displacement node, since the air is not free to move there. The open end is a
displacement antinode. For a standing wave to be produced, the sound’s wavelength
must be such that an antinode is formed at one end and a node at the opposite end.
The longest wavelength that can satisfy this condition is one for which the pipe’s
length , equals l/4, or l 5 4, (Fig. 16-42). The corresponding frequency, the pipe’s
lowest resonant frequency, the fundamental frequency, or first harmonic, is

f1 5

or f1 5 (16-33)

The second longest wave that can satisfy the condition of a node at one end and an
antinode at the other end corresponds to , 5 l, or l 5 , (Fig. 16-42). The corre-

sponding frequency 5 }
3

4
} , which is three times the fundamental frequency:

f3 5 3 f1

The third longest wave corresponds to , 5 l, and a frequency 5 }
5

4
} , which

is five times the fundamental frequency f1:

f5 5 5 f1

In general, we have as our resonant frequencies all odd multiples of the funda-
mental frequency f1:

fn 5 n f1 (16-34)

No even harmonics are present for a pipe closed at one end.
Standing waves can also be produced in a pipe when a turbulent airflow is directed

near one end (Fig. 16-43). This method is utilized in musical wind instruments, such
as the organ and flute. In this case, the various resonant frequencies are produced si-
multaneously.

v

}
l

v

}
4,

4
}
3

3
}
4

v

}
,

v

}
l

v

}
,

v

}
l

4
}
5



A string instrument, such as a guitar, violin, or piano, utilizes an air cavity to am-
plify the sound produced. Each instrument, of course, has its own characteristic
sound. Two instruments can produce the same note and yet sound quite different
from each other. The musical note is determined by the fundamental frequency of the
sound; the differences are in the harmonic structure of the sounds. Different instru-
ments produce different relative amplitudes of the harmonics when the same musical
note is played. The human ear detects the harmonic structure of the sounds and iden-
tifies them with the respective instruments. See Fig. 16-45. This harmonic structure
is determined by the size and shape of the air cavity, the structure of the sounding
board, the characteristics of the string, and the interaction of these three factors, to-
gether with where and how the string is sounded—whether it is plucked, bowed, or
hammered.
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EXAMPLE 15 The Frequency of Sound From a Flute

All the holes of a flute of length 65.6 cm are covered, and a
musical note is produced when the flute is blown into. The
flute acts as a pipe open at both ends. Find the frequency of the
sound produced.

SOLUTION  We apply Eq. 16-31 to find the fundamental
frequency of the flute, using the speed of sound at 20.0° C
(344 m/s; Table 16-1):

f1 5 5 5 262 Hz

This is the frequency of the musical note middle C.

344 m/s
}}
2(0.656 m)

v

}
2<

A tube is completely filled with water, and a tuning fork vi-
brating at 512 Hz is placed above it. The level of water in the
tube is gradually reduced as water is drained from the bottom
until a condition of resonance is reached, at which point the
sound is loudest. Find the length < of the air-filled cavity
(Fig. 16-44).

SOLUTION  What we are interested in here is the empty
part of the tube. As we drain water out, we are in essence
changing the length < of a pipe closed at one end (the top of
the water column causes the “pipe” to be closed at one end).
Resonance occurs when the frequency of the tuning fork
equals a resonant frequency of this “pipe” of length <. Using
the speed of sound at 20.0° C (344 m/s; Table 16-1), the wave-
length of the sound produced by the tuning fork is:

l 5 5 5 0.672 m 5 67.2 cm

From Fig. 16-41, we see that the shortest value of < for reso-
nance is wavelength. Thus < 5 l 5 16.8 cm.

344 m/s
}
512 Hz
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}
f

1
}
4
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Fig. 16-45 The same musical note A, f1 5 440 Hz, is pro-
duced on two instruments. The sounds produced are quite
different because of their different harmonic structures.

EXAMPLE 14 Adjusting the Length of a Column of Air to Produce a Standing Wave

Fig. 16-44

Recorder

Harmonica



The human ear is a remarkably sensitive
detector of sounds. It is able to detect
faint sounds with displacements smaller
than an atomic diameter, as seen in Exam-
ple 9. Furthermore, the ear is capable of
harmonic analysis of the sounds it hears.
For example, you can immediately recog-
nize the difference between a guitar and a
piano playing the same musical note.
Somehow your ear senses the harmonic
components of the two sounds, and, uti-
lizing your memory of the harmonics of
each instrument, you identify one source
as a guitar and the other as a piano. Simi-
larly, you are usually able to recognize fa-
miliar voices over the telephone. The
sound waves transmitted by the tele-
phone receiver are completely deter-
mined by their harmonic components.
Thus recognition of voices consists of
some kind of harmonic analysis by the ear
and brain.

The 3 cm long auditory canal in the
outer ear is essentially an air-filled pipe

closed at one end. Its fundamental fre-
quency corresponds to a wavelength l 5

4, 5 4(3 cm) 5 12 cm, or a frequency

f 5 5 5 2800 Hz. The max-

imum sensitivity of human hearing occurs
at about this frequency (roughly that of a
baby’s cry). Thus the length of the audi-
tory canal explains why the ear should be
particularly sensitive to frequencies close
to 2800 Hz. However, this factor alone
cannot explain the broad range of fre-
quencies to which the ear can be highly
sensitive (roughly 20 Hz to 20,000 Hz for
1% of the population). The most impor-
tant frequency-dependent effects occur
in the cochlea of the inner ear, shown in
Fig. 16-A.

Connecting the cochlea’s oval window
to the eardrum at the end of the auditory
canal are the three bones of the middle
ear (hammer, anvil, and stirrup). These
bones serve as a system of levers that
roughly doubles the force of vibrations

transmitted from the eardrum to the oval
window. Since the area of the oval win-
dow is much less than the area of the
eardrum, the pressure of sound waves is
greatly increased as the wave passes into
the viscous fluid within the cochlea.
Sound waves propagate through that fluid
from the oval window to the tip of the
cochlea, returning along the other side of
the basilar membrane, as indicated by ar-
rows in the figure. Pressure differences
between the fluids on either side of the
basilar membrane displace the membrane
laterally. Tens of thousands of nerve end-
ings along the membrane sense this dis-
placement. These nerve endings then
transmit electrical pulses to the brain,
and we hear. Information about the har-
monics present in the sound wave are
provided by the location of the stimulated
nerve endings along the basilar mem-
brane and by the rate of transmission of
pulses.

340 m/s
}
0.12 m

v
}
l

The Ear

Fig. 16-A Simplified diagram of the ear.

Closer LookA
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(upper signs if toward;
lower signs if away)

HAPTER SUMMARY16CMechanical waves, such as sound, water waves, and waves
on a string, require a material medium through which the
wave travels. Electromagnetic waves, including light, re-
quire no medium; they can travel through a vacuum.

For a continuous, periodic wave (as opposed to a wave
pulse) of frequency f, the motion of the medium at each point
in the wave is a periodic disturbance that has the same fre-
quency f. This frequency is determined by the wave source.

The distance between two successive identical points on a
wave is called the “wavelength,” denoted by l. The speed v
at which the wave energy and wave form move is determined
by the medium. The speed, wavelength, and frequency of
any wave are related by the equation

v 5 l f

A wave on a string of mass per unit length m, under a ten-
sion F, travels at a speed

v 5 !w

Sound travels through a diatomic, ideal gas at a speed

v 5 !w
where k is Boltzmann’s constant, T is absolute temperature,
and m is the molecular mass.

Water waves having wavelengths that are greater than
10 cm but much less than the depth of the water travel at a
speed

v 5 !w

The Doppler effect is the phenomenon that occurs when
either the source of a wave or an observer moves relative to
the medium through which the wave travels. The result is
that the observed frequency fO is different from the source
frequency fS. For mechanical waves, the two frequencies are
related by the equation

fO 5 fS 1 2
where the upper sign in both numerator and denominator ap-
plies when the motion of either the observer or the source is
toward the other and the lower sign applies when either the
observer or the source moves away from the other.

The power transmitted by a harmonic wave on a string is

P 5 2p 2mv f 2A2

where m is the string’s mass per unit length, v is the wave
speed, f is the frequency, and A is the amplitude. The inten-
sity of a harmonic sound wave is given by a similar expres-
sion (with the mass density r replacing m):

I 5 2p 2rvf 2A2

where intensity is defined as the power per cross-sectional
area !:

I 5

The intensity level b of a sound wave, measured in decibels,
is defined as

b 5 10 log 1 2
where the reference level I0 5 10 ]12 W/m2 is the lowest
sound intensity perceptible by individuals with normal hear-
ing.

The wave displacement y in a harmonic wave traveling in
the positive x direction is expressed in terms of position x
and time t as

y 5 A sin 32p 1 2 24
where A is the amplitude of the wave, T is the period, and l
is the wavelength. For a wave traveling in the negative x di-
rection, the corresponding expression is

y 5 A sin 32p 1 1 24
The superposition principle states that when two or more

wave disturbances are present in a medium the displacement
at any point is the sum of the individual displacements.

When two sources produce waves that either are in phase
or have a constant phase difference, the sources are said to be
coherent. Coherent wave sources can produce observable in-
terference effects at various points in space.

When the waves at a given point are in phase, they inter-
fere constructively, and the resulting amplitude is maxi-
mum—the sum of the two amplitudes. When waves are 1808
out of phase, they interfere destructively, and the amplitude
is the difference of the two amplitudes—equal to zero if the
amplitudes are equal.

In general, the phase difference Df between two waves,
arising from a path-length difference Dx, is

Df 5 2p

Constructive interference occurs when

Dx 5 0, l, 2l, 3l, . . .

Destructive interference occurs when

Dx 5 , , , . . .
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Two waves of slightly different frequencies f1 and f2 produce
beats with a beat frequency fB 5 f1 2 f2.

Standing waves are waves in which, at certain points,
called “nodes,” the displacement is always zero, whereas at
other points, called “antinodes,” the displacement is maxi-
mum. Standing waves are formed when waves are reflected
from the boundaries of the wave medium. The distance Dx
between adjacent nodes in any standing wave equals
wavelength:

Dx 5

For a standing wave on a string having both ends fixed, the
two ends are located at nodes of the standing wave, and so
the length is a multiple of wavelength:

, 5

or l 5

A wave having such a wavelength will be produced if the
frequency of the source is appropriate for the wave’s speed
v and length ,:

f 5

with l given above, or

fn 5 n (for n 5 1, 2, 3, . . .)

These frequencies are the resonant frequencies of the string.
The lowest resonant frequency f1 is called the “fundamental
frequency,” or the “first harmonic,” f2 is called the “second
harmonic,” f3 is the “third harmonic,” and so forth.

For a standing sound wave in a pipe with both ends open,
each end is an antinode, and the harmonic frequencies are
the same as for a string:

fn 5 n (for n 5 1, 2, 3, . . .)

In a pipe open at one end and closed at the other, there is a
node at the closed end and an antinode at the open end; the
harmonics, which are lower than for an open pipe of the
same length, are given by

fn 5 n

Any standing wave can be regarded as a superposition of
various harmonics.
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Questions

1 Suppose you throw someone a ball, thereby transport-
ing kinetic energy. Could you consider the motion of
the ball to be a mechanical wave pulse?

2 Which quantities determine the speed of a particle in a
medium through which a wave propagates: (a) wave
speed; (b) wavelength and frequency; (c) amplitude
and frequency; (d) wave speed and period?

3 Would it be possible to detect on earth sounds pro-
duced on another planet if you had a detector sensitive
enough to very low-intensity sounds?

4 Suppose you were standing on the moon as a nearby
lunar landing module approached the surface, firing
its engines to slow its descent. Could you hear the
engine?

5 When cars begin to move in a long line of stalled traf-
fic, the motion passes through the line as a wave pulse.
(a) What is the direction of motion of the pulse rela-

tive to the motion of the cars?
(b) Is the wave speed affected by the drivers’ reaction

times?

6 Creating a “wave” is a popular pastime at football
games and other sporting events. The wave begins
when everyone in one section of the stadium quickly
stands up and then sits down. Then people sitting in an
adjacent section, say, to the right, respond with the
same motion but delayed a bit. Next the section to
their right follows. The result is a wave pulse through
the spectators. Does human reaction time affect the
wave’s (a) amplitude; (b) period; (c) wave speed;
(d) wavelength?

7 When lightning strikes at some distance, will you see
the lightning first or hear the accompanying thunder
first? Explain.

8 Suppose you are in a rowboat on a quiet lake as a fast
motorboat passes at a considerable distance. The mo-
torboat produces waves, which are a superposition of
harmonic waves of various wavelengths. Do the
waves of longer or shorter wavelengths reach you
first?

(for n 5 1, 2, 3, . . .) (for n 5 1, 3, 5, . . . ,
odd only)



9 A source of sound and an observer both move through
the air along the same line at the same velocity so that
there is zero velocity of the source relative to the ob-
server.
(a) Will the observer hear a Doppler-shifted fre-

quency?
(b) Will the time it takes for the sound to travel from

the source to the observer be different from what it
would be if both were at rest?

10 Large supersonic transport planes (SST’s) produce a
sonic boom, which many people find very objection-
able. Suppose an SST is to travel coast to coast. Would
it be reasonable for the plane to head out over the
ocean immediately after takeoff, break the sound bar-
rier there and then head back over land to avoid creat-
ing a sonic boom over land?

11 By what factor must the amplitude of a sound wave be
increased in order to increase the intensity level by
10 dB?

12 If a 100 Hz harmonic sound wave produces a 60 dB
sound at a given point, what is the intensity level of a
1000 Hz harmonic sound wave having the same am-
plitude at the same point?

13 If a jet engine produces at takeoff a 100 dB sound
100 m from the aircraft, at what distance should
the sound’s intensity level be 80 dB? Assume that
the sound is not reflected or absorbed by the sur-
roundings.

14 Some of the strings on a classical guitar are single
strands of plastic of varying diameters, whereas others
are plastic wrapped with wire. Thus the mass of the
strings varies considerably. Will the sound produced
by the heaviest string have a higher or lower frequency
than the sound produced by the other strings?

15 A guitar is tuned when the tension in its strings is ad-
justed. Should you increase or decrease the tension in
a string to produce a higher-frequency sound?

16 Will standing sound waves have a lower fundamental
frequency in pipe A, which is open at both ends, or in
pipe B, of equal length, open at one end and closed at
the other?

17 Suppose you replace the air in a pipe by helium.
(a) How would this affect the resonant frequencies of

sound waves in the pipe?
(b) Suppose you inhale some helium from a helium-

filled balloon. What happens to your voice? Ex-
plain.

Answers to Odd-Numbered Questions

1 no; 3 no; 5 (a) opposite; (b) yes; 7 see it first;
9 (a) no; (b) yes; 11 Ï�1w0w; 13 1 km; 15 increase;
17 (a) increases them; (b) much higher pitch

Questions 421

Description of Waves

1 A cork floating on a lake bobs up and down as a small
wave passes. The cork completes 4.00 cycles in 1.00 s.
The wave peaks are 10.0 cm apart. Find the speed of
the wave.

2 Tsunamis (or tidal waves) are very-long-wavelength
water waves generated by earthquakes. A tsunami
originating in Japan has a wavelength of 105 m and a
period of 10 minutes. How long does it take to travel
across the Pacific Ocean to California, 8000 km away?

3 Radio waves are electromagnetic waves that travel at a
speed of 3.00 3 108 m/s, the speed of light. An AM
radio station has an assigned frequency of 890 kHz,
which means that the radio waves broadcast by the
station are at this frequency. Find the wavelength of
these radio waves.

4 Suppose you are listening to a song on your radio. You
change to another station playing the same song. If the
second station broadcasts at a higher radio frequency
than the first, will that affect the wavelength of the
sound you hear?

16-1
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5 You see lightning strike a mountaintop, and 3.00 s
later you hear the accompanying thunder. How far
away is the mountaintop? The speed of sound is
340 m/s, and the speed of light is 3.00 3 108 m/s.

6 Earthquakes generate two types of waves, which
travel through the earth: (1) primary, or P, waves are
longitudinal pressure waves that have the greater
speed (about 5 km/s in the crust) and are therefore the
first to be felt at some distance from the center of the
earthquake, and (2) secondary, or S, waves are trans-
verse, shear waves that are somewhat slower
(v < 3 km/s). The location of the earthquake can be
determined by recording the arrival times for these
waves on seismographs at various locations. Suppose
an S wave is recorded 2 min after a P wave. About
how far away from the seismograph is the earth-
quake’s center?

7 Suppose that there is a seismic P wave traveling at
5.0 3 103 m/s with a wavelength of 2.0 3 103 m.
(a) Find the wave’s frequency.
(b) Find the average speed of a particle of the earth’s

surface at a point where the wave amplitude is
2.0 cm.

8 When a transverse wave of amplitude 2.00 cm and
wavelength 20.0 cm passes through a medium, the av-
erage speed of a particle of the medium is 4.00 m/s.
Find the speed of the wave.

9 A nerve impulse is a wave pulse that travels along a
nerve, typically at a speed of 50 m/s. If the pulse
sweeps past one point in the nerve from t 5 0 to
t 5 2 ms, during what time interval will it pass a point
in the nerve 1 m away?

Wave Speed

10 By what percent must one increase the tension in a
guitar string to change the speed of waves on the
string from 300 m/s to 330 m/s?

11 A 1.00 m long string of mass 0.0100 kg, under a ten-
sion of 100 N, transmits a wave of amplitude 2.00 cm
and wavelength 10.0 cm.
(a) Find the speed of the wave form.
(b) How far does a particle of the string travel during

one cycle?
(c) What is the average speed of a particle of the

string?

12 A 2.00 m long string of mass 10.0 g is attached to a
3.00 m long string of mass 30.0 g (Fig. 16-46). The
strings are under a tension of 100 N.
(a) How long will it take for a wave pulse to travel

from point A to point C?
(b) How long will it take for reflected pulses to return

to point A? Indicate the orientation of the reflected
pulses relative to the original pulse.

13 The normal human ear is sensitive to sounds with fre-
quencies from about 20 Hz to about 20,000 Hz. What
is the corresponding range of wavelengths (a) in air;
(b) in water?

14 If you hear your echo 3.00 s after you shout, how far
away is the mountain reflecting the sound?

15 Suppose you are in your dorm listening on your radio
to a football game being played on campus, 500 m
away. As a touchdown is scored, you hear on the radio
the roar of the crowd. When do you hear the crowd’s
cheers directly from the stadium?

16 Find the frequency of a deep-water wave of wave-
length 30.0 cm.

17 You are floating in the ocean in deep water as a 5.00 m
wavelength wave passes. How long do you wait be-
tween wave peaks?

18 Find the speed of deep-water waves having a fre-
quency of 1.00 Hz.

19 A fisherman sits in a stationary boat in the middle of a
lake as a high-powered motorboat passes at some dis-
tance. The fisherman notices that the wavelengths of
the waves from the wake gradually decrease, with
10.0 cm waves arriving 60.0 s after 30.0 cm waves.
How far away was the motorboat?

20 A boat floating at rest encounters an unusually big
deep-water ocean wave with an amplitude of 15.0 m
and a wavelength of 200 m. Find the boat’s speed and
the magnitude of its acceleration.

21 Sonar depth finders are used on boats to determine the
depth of water by reflecting a pulse of sound from the
bottom. What is the depth of water if there is a 0.10 s
delay between emission of the pulse and detection of
the reflected pulse?

22 At what temperature would sound travel through air at
400 m/s?

16-2

Fig. 16-46

★

★

★

★

★

★



23 How much longer would it take for sound to travel
1.0 km through arctic air at ]508 C than to travel
1.0 km through desert air at 1508 C?

24 A bat emits ultrasonic pulses and uses them to navi-
gate and to locate flying insects. If these pulses are
sent at a rate of 4 per second, what is the maximum
distance a reflecting object can be if the reflected pulse
is to be received by the bat before the next pulse is
emitted?

25 What is the wavelength of a 5.00 3 104 Hz sound
wave pulse emitted by a bat?

The Doppler Effect

26 Suppose you are in a high-speed boat moving at
20.0 m/s directly into approaching 1.00 m wavelength
waves. What is the time interval between wave peaks
hitting the boat?

27 A surfer rides a wave, moving at the same speed as the
wave. What is the frequency of the wave, as observed
by the surfer?

28 Suppose you want to demonstrate the Doppler effect
for deep-water waves, using a 6.00 Hz source moving
toward a stationary observer. How fast would the
source have to move through the water if the fre-
quency of the waves seen by the observer is to be
twice the frequency of the source?

29 A sound source moves through air toward a stationary
observer. The frequency of the sound the observer
hears is 20.0% higher than the source frequency. How
fast is the source moving?

30 Suppose that a 1024 Hz tuning fork moves at 10.0 m/s
through (a) air and (b) water. For each medium, find
the observed frequency of the sound at a point directly
in front of the source.

31 The driver of a car hears the hum of its engine at a fre-
quency of 200 Hz.
(a) Find the frequency of the sound heard by a pedes-

trian standing beside the road, first as the car ap-
proaches at a speed of 20.0 m/s and then after it
passes.

(b) Now suppose that the wind is blowing at a speed of
20.0 m/s in the direction of the car’s motion. What
would be the frequencies of the sound heard by the
pedestrian as the car approaches and passes?

32 Bats use the Doppler effect as a directional guide and
to detect insects. As it flies at a speed of 5.00 m/s, a bat
emits a brief pulse of 60.0 kHz ultrasound in the for-
ward direction. A nearly stationary insect in front of
the bat reflects sound back to the bat. Find the fre-
quency of the sound detected by the bat. (Bats are par-
ticularly sensitive to 61.8-kHz sound.)

33 As you stand beside the German Autobahn (where
there are no speed limits), a Porsche passes while
sounding its horn. The frequency of the sound you
hear drops from 500 Hz as the car approaches to
300 Hz after the car passes. How fast was it moving?

34 Sound from a foghorn in a lighthouse has a frequency
of 100 Hz. Suppose that during a storm 40.0 m/s
winds blow by the lighthouse. What is the frequency
of sound heard by a stationary observer (a) downwind
and (b) upwind from the lighthouse?

35 A driver sounds his horn as he drives at 25.0 m/s to-
ward a tunnel in the side of a mountain. The moun-
tainside reflects the sound, and the driver hears an
echo. Find the frequency of the echo heard by the dri-
ver if the frequency emitted by the horn is 500 Hz.

36 Suppose that, as you are driving, a stationary police
radar unit in front of you detects a radar signal re-
flected from your car. The ratio of the reflected signal
frequency to the emitted frequency differs from unity
by 2 3 10 ]7. How fast are you going?

37 A police car moving at 20.0 m/s follows a speeding
car moving at 30.0 m/s. A radar unit in the police car
emits a 1.00 3 1010 Hz signal, which is reflected by
the other car. What is the difference between this emit-
ted frequency and the frequency of the reflected signal
detected by the radar unit?

38 A star is moving away from the earth at 50.0 km/s. By
how much will the Ha line ( f 5 4.571 3 1014 Hz) be
shifted and in what direction?

39 A supersonic jet passes directly overhead at an alti-
tude of 12,000 m, traveling at 680 m/s, or mach 2.
How much time elapses before you hear the sonic
boom?

Power and Intensity; the Decibel Scale

40 Two people talk simultaneously. If the intensity level
is 60 dB when either one speaks alone, what is the in-
tensity level when both speak at once?

41 One hundred people at a party are talking at once. On
the average, each person alone produces 65 dB sound
near the center of the room. Find the intensity level
produced by all 100.

42 When a 100 dB sound wave comes through an open
window of area 0.500 m2, how much acoustic energy
passes through the window in a 10.0 min interval?

43 At a football game, 100,000 spectators produce sound
that is heard 1.00 km away, where the intensity level is
60.0 dB. Assuming that no sound is reflected or ab-
sorbed, we can treat the sound as radiating equally in
all directions, so that the intensity is constant over a
hemispherical surface. How much acoustic power is
generated by the fans?
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44 The driver of a car honks her horn as she enters a nar-
row tunnel. If the intensity level is 80.0 dB 20.0 m in
front of the car, what is the intensity level 100 m in
front of the car? Assume that no sound is absorbed by
the tunnel walls.

45 Find the intensity level of a 50.0 Hz sound wave in
which the amplitude of vibration is 1.00 mm.

46 Only half the population can hear a 60 dB, 60 Hz
sound, but nearly everyone can hear a 100 dB, 60 Hz
sound. What is the ratio of the amplitudes of these
waves?

47 Find the intensity of a 53.0 dB sound.
48 What is the minimum power required for a loud-

speaker to produce 105 dB sound at a distance of
10.0 m in any direction?

Time Dependence of the
Displacement of a Particle
of the Medium

49 A wave on a string is described by the equation y 5

5 sin (4p t 2 0.1px), where x and y are in cm and t is
in s. What are the values of the amplitude, frequency,
wavelength, and speed of this wave? In what direction
does it travel?

50 For the wave described in Problem 49, graph y versus
x at t 5 0, t 5 0.125 s, and t 5 0.250 s.

51 A distant 512 Hz tuning fork produces a plane sound
wave that moves along the positive x-axis and has an
amplitude of 1.00 3 10 ]8 m. Write an expression for
the displacement as a function of x and t.

52 A wave is described by the equation y 5 3 sin (2x 1

10t), where x is in cm and t is in s. Find the wave’s am-
plitude, frequency, wavelength, speed, and direction
of motion.

53 A wave of wavelength 40.0 cm and amplitude 4.00 cm
propagates along a string at 10.0 m/s, in the positive
x direction. At t 5 0, the displacement at the origin is
zero and the string is moving upward. Find the dis-
placement at x 5 3.00 m at t 5 0.500 s.

54 The wave form shown in Fig. 16-47 travels along the
positive x-axis at 10.0 m/s. Find the displacement y at
x 5 25.0 m at t 5 20.0 s.

Superposition of Waves; Beats;
Standing Waves

55 Find an expression for the displacement y produced
when there are two waves present with displacements
y1 5 4 sin (2t 2 5x) and y2 5 2 sin (2t 2 5x).

56 Two upward wave pulses are generated at opposite
ends of a string and travel toward each other. One has
an amplitude of 5.00 cm and the other has an ampli-
tude of 3.00 cm. What is the maximum displacement
of any particle of the string, and when does this dis-
placement occur?

57 A positive (upward) wave pulse and a negative (down-
ward) wave pulse are generated simultaneously at op-
posite ends of a string. The maximum displacements
of the positive and negative pulses are 5.00 cm and
3.00 cm respectively. What is the maximum displace-
ment at the midpoint of the string?

58 Two small loudspeakers are connected to a single
source—an 860 Hz sine-wave generator—so that they
are coherent. Suppose that initially the speakers are
side by side, a few centimeters apart, equidistant from
a listener 2.00 m in front of the speakers.
(a) One of the speakers is slowly moved straight back

away from the listener until at some point she
hears almost no sound. How far is the speaker
moved?

(b) How much farther back should the speaker be
moved for the sound to be about as loud as it was
initially?

59 Two coherent harmonic sound sources produce de-
structive interference at a point that is 1.23 m from one
source and 1.26 m from the other. What are the three
lowest possible frequencies of the waves?

60 Find the beat frequency produced by an 800 Hz source
and an 804 Hz source.

61 A piano tuner simultaneously strikes a 262 Hz tuning
fork and the middle C key on a piano and hears beats
with a beat period of 0.500 s. What are the possible
frequencies of the slightly out-of-tune key? Should the
tension in the piano wire be changed in such a way as
to shorten or to lengthen the period of the beats?

62 Find the wavelengths of the three longest standing
waves that can be formed on a 1.00 m long string fixed
at both ends.

63 Find the first three harmonics of a 80.0 cm guitar
string if the speed of waves on the string is 704 m/s.
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64 Use the trigonometric identity sin (a 6 b) 5

sin a cos b 6 sin b cos a to prove that the superposi-
tion of two harmonic waves traveling in opposite di-
rections produces a standing wave; i.e., prove that if

y1 5 A sin 32p 1 2 24
and y2 5 A sin 32p 1 1 24
then y 5 y1 1 y2 5 2 A sin 1 2 cos 1 2
Sketch y at various points in a cycle.

65 A musician playing a violin, guitar, or other string in-
strument changes the fundamental frequency of one of
the strings by “fingering,” that is, by pressing the
string against the neck of the instrument with a finger
so that the length of the string is effectively shortened.
To change a string’s fundamental frequency from
440 Hz (A) to 512 Hz (C), how much should one
shorten the string if its original length is 70 cm?

66 The E string on a guitar has a length of 66.0 cm. The
string’s fundamental frequency is 165 Hz. Pressing
the string against one of the frets along the neck of the
guitar effectively shortens the length of the string.
What length will give the E string a frequency of 262
Hz (middle C)? Assume the tension is constant.

67 The longest pipe in a certain organ is 4.00 m long.
What is the lowest frequency the organ will produce if
the pipe is (a) open at both ends; (b) closed at one end?

68 Given that most people cannot hear sounds outside the
frequency range 50 Hz to 10,000 Hz, what are reason-
able minimum and maximum lengths for musical
wind instruments, which are open at both ends?

69 If the temperature of the air in an organ pipe drops
from 300 K to 250 K, what will the fundamental fre-
quency of the pipe be if it originally was 440 Hz?

70 At a certain point in space, two waves have displace-
ments y1 and y2, which are graphed as functions of
time in Fig. 16-48. Sketch the resultant displacement
y 5 y1 1 y2.

Additional Problems
71 The Richter scale is a logarithmic scale for measur-

ing the total energy released in an earthquake. The
Richter magnitude M is defined by the equation

M 5 log 1 2, where E0 is a reference energy

equal to 25,000 J.

(a) How much energy was released in the 1994 Los
Angeles earthquake, which registered 6.8 on the
Richter scale?

(b) By what factor would the energy of this quake
have to be increased in order to have a magnitude
of 7.8, or of 8.8?

72 The 1906 San Francisco earthquake lasted 1 min and
registered 8.2 on the Richter scale (defined in problem
71).
(a) What was the average power generated during this

earthquake?
(b) Estimate the intensity 10 km from the center of the

quake.
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73 An earthquake on the opposite side of the earth from
you generates waves. How long do you wait for the ar-
rival of P waves that travel through the earth at a speed
of 5.00 km/s?

74 In a harmonic water wave, the water moves along a
circular path of radius A.
(a) Prove that the speed of the water vw is related to

the wave speed v by the equation vw 5 v.

(b) By applying Bernoulli’s equation in the rest
frame of the wave, show that the wave speed is

v 5 !w
.

75 An autofocus camera sends out an ultrasonic pulse
that is reflected by an object and then detected by the
camera’s rangefinder. If the time delay between emis-
sion and detection is 0.0100 s, how far is the object
from the camera?

76 Show that the acceleration of the water at the peak of
a harmonic water wave equals g when the amplitude

of the wave equals . Would you expect the ampli-

tude of a water wave to ever exceed this value?
77 Find the maximum speed and acceleration of a parti-

cle of a string that transmits a wave of amplitude
3.00 cm and frequency 20.0 Hz.

78 You can easily produce a standing wave by blowing
across the top of an empty bottle. The fundamental
frequency of the standing wave is surprisingly low,
however. The air in the neck of the bottle oscillates in
SHM as the air lower down in the bottle is alternately
compressed and expanded. The air in the neck be-
haves like a mass attached to a spring. The springlike
force is provided by the lower air. The air in the neck
must move a considerable distance before there is a
significant opposing force from the compressed lower
air. Thus the force constant is small, and the resonant

frequency !w
is low. A detailed mechanical

analysis yields the following approximate formula

for the resonant frequency: f 5 }
1
2

} 1 2, where

v is the speed of sound and r, ,, and V are as indicated
in Fig. 16-50.
(a) Find the fundamental frequency of the bottle

shown.
(b) Find the minimum length of an organ pipe having

the same fundamental frequency.
79 We perceive the direction of sound sources through

slight time differences between the arrival of waves at
each ear. The waves reach the ears simultaneously
when the sound source is directly in front of the lis-
tener.
(a) Find the time difference when sound comes from a

distant source at an angle of 30.0° relative to the
forward direction, as indicated in Fig. 16-51.

(b) What would the time difference be if the source
were directly behind the listener? How can the lis-
tener distinguish between sources directly in front
and those directly behind? Will the effect of rotat-
ing the head a few degrees give the same result for
sources in front and those behind?
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